ST. CHARLES MESA DRAINAGE BASINS **OUTFALL SYSTEMS PLANNING STUDY**

PRELIMINARY DESIGN REPORT AND IMPLEMENTATION PLAN

August, 1994

Prepared for:

.

D

Pueblo County Department of Public Works 33601 United Avenue Pueblo County, Colorado 81001-4896

0

Prepared by:

Kiowa Engineering Corporation 1011 North Weber #200 Colorado Springs, Colorado 80903

ST. CHARLES MESA DRAINAGE BASINS OUTFALL SYSTEMS PLANNING STUDY

PRELIMINARY DESIGN REPORT AND IMPLEMENTATION PLAN

Prepared for:

Pueblo County Department of Public Works 33601 United Avenue Pueblo, Colorado 81001-4896

Prepared by:

Kiowa Engineering Corporation 1011 N. Weber, Suite 200 Colorado Springs, Colorado 80903-2492

> KIOWA Project No. 94.01.01 D25/R272

> > March, 1994 Revised May, 1994 Revised July, 1994

EXECUTIVE SUMMARY

Authorization, Purpose and Scope

The St. Charles Mesa Drainage Basins Outfall Systems Planning Study was authorized by the Pueblo County Department of Public Works. The specific tasks were performed in accordance with the terms of agreement between Pueblo County and Kiowa Engineering, dated December 27, 1993.

The purpose of the study was to analyze the existing and future drainage conditions for the drainage basins on the St. Charles Mesa, to develop alternative outfall planning concepts, to prepare a preliminary design of the preferred outfall alternatives, and to prepare a plan for implementation of the improvements identified when conducting this study. The planning for drainage facilities within the St. Charles Mesa drainage basins was initiated in November, 1992. The preparation of topographic mapping, hydrology, drainage facility inventory and development of outfall alternatives within the study area initially started under a contract between the County and Abel Engineering Professionals, Inc., dated October 3, 1991. The information prepared under the initial contract has been incorporated into this report to the greatest extent practical. The St. Charles Mesa Final Report Drainage Implementation Plan, was delivered to the County in September of 1993.

Basin Description

The St. Charles Mesa Drainage Basin is a rural area in unincorporated Pueblo County and is located near the confluence of the Arkansas and St. Charles Rivers. The basin contributes runoff to both the Arkansas and St. Charles Rivers. The basin is largely developed with large lot, single family and agricultural uses. The basin is bisected by the business route of US Highway 50 which runs in an east-west direction. The County anticipates that the basin will continue to be developed with increasing land use densities in the future. The existing drainage system(s) which are inadequate for the majority of the basin will be overtopped on a more frequent basis as the basin develops.

The St. Charles basin covers a total of 16 square miles in unincorporated Pueblo County, Colorado. The basin drains generally to the north, towards the Arkansas River. A portion of the study area flows directly to the St. Charles River, or lies within the St. Charles River floodplain. The Bessemer Ditch traverses the basin from west to east. The Ditch enters the basin in the vicinity of County Farm Road and Aspen Road, and exits the basin at the siphon under the St. Charles River. This Ditch has the capability of diverting all of the existing runoff which originates in the southern most areas of the St. Charles Mesa drainage basin.

Development in the basin consists of agricultural and open space, rural residential, low to medium density single family residential, institutional, industrial and commercial uses. The predominant existing uses are agricultural and rural residential which make up over 80 percent of the drainage basin. The existing single family areas have developed in a random manner and have provided little or no storm drainage infrastructure. In some areas, the single-family developments have blocked historic flow paths. Because the basin was historically used for agricultural purposes, there are numerous locations where existing (or remnants of) irrigated fields are very flat and cause excess runoff to pond. Urbanization has increased this tendency to the point where habitable structures are impacted by shallow flooding, mud and debris damages.

This area of Pueblo County can be described, in general as high plains, with total precipitation amounts typical of a semi-arid region. Winters are generally cool and dry. Precipitation ranges from 10 to 12 inches per year, with the majority of this precipitation occurring in spring and summer in the form of rainfall.

Soils within the St. Charles basin vary between soil types A through D, as identified by the U. S. Department of Agriculture, Soil Conservation Service. The predominant soil groupings are in Hydrologic Soils Group B, which cover approximately 90 percent of the basin. These soils are highly permeable and generally result in low rates of excess runoff until they become saturated. The soils have high to moderate infiltration rates, and are extremely susceptible to wind and water erosion where poor vegetation cover exists.

Land use information for the existing and future conditions was reviewed as part of the planning effort. The existing land use information was compiled through field review and examination of the topographic maps prepared for this study. The future land use information was developed using planning maps, zoning information and through consultation with the Pueblo County Planning and Development Department. This information is used in the hydrologic analysis to predict runoff rates and volumes for the purposes of facility evaluation.

Hydrology

A hydrologic analysis was conducted in order to determine peak discharges and runoff volumes for various storm types, and basin development conditions. This data was used in the evaluation of existing flood problems, and in the evaluation of alternative outfall plans. Discharges for the 2-, 5-, 10- and 100-year frequencies were analyzed for the existing and future development conditions.

The runoff model used to determine the peak flows and volumes within the study area was the Colorado Urban Hydrograph Procedure (CUHP), in combination with the Stormwater Management Model (SWMM). The sub-basin hydrographs were routed through the major flow paths using the UDSWM2-PC computer model.

The study area subject to the hydrologic evaluation is the St. Charles Mesa Drainage Basin. The basin was divided into four regional basins. The St. Charles and Arkansas River basins are direct flow areas to these rivers. Many of the direct flow basins lie within the floodplains of the these Rivers, or are relatively small sub-basins which lie at the northern and eastern edges of the Mesa. The Bessemer Ditch regional sub-basin represents those areas which lie south of the Ditch as it traverses the St. Charles Mesa basin. The existing flow which originates in these basins has been assumed to be intercepted by the Ditch. The Santa Fe Avenue regional sub-basins collect runoff originating north of the Bessemer Ditch and south of Santa Fe Avenue.

For the most part, the sub-basins lying on the St. Charles Mesa are bounded by roadways. The sub-basins are linked together by roadside ditches and culverts. At many of the intersections ponding is possible because the roadways are physically higher than the adjacent ground. Driveway culverts which cross over the roadside ditches also cause runoff to pond in low spots, away from the main flow path.

The amount of impervious area within each sub-basin was estimated for two conditions, namely; (1) Existing development, and (2) future development. Existing development within the St. Charles Mesa basin is predominantly open space, agricultural and rural residential (lots exceeding 1 acre in size). The future condition development will consist mainly of single family residential with lots greater than 1 acre in size. Commercial uses now and in the future occur along Santa Fe Avenue. The projected land use data was obtained using zoning and comprehensive planning information provided by the Pueblo County Planning and Development Department.

Presented on Tables 3-5 and 3-6 in Section III are the peak discharges for the sub-basins defined for the St. Charles Mesa drainage basin. Complete CUHP output for the 100-year existing and future development conditions are contained within he Technical Addendum to this report. The Hydrologic Sub-basin Map which illustrates the basin boundary, channel routing elements, design points and sub-basin locations is contained within the map pocket at the rear of the report (Exhibit 1). A summary of flow rates for key design points is presented on Tables 3-7 and 3-8.

The results show several impacts upon the hydrology for the Mesa because of urbanization. Firstly, there are significant increases in peak discharge and volume for the individual sub-basins which will develop from agricultural use and open space into single-family

residential. The impact upon the peak flows along the receiving drainage paths (i.e., the Santa Fe Drive flow path and along the north south roadways), is not as significant in the developed scenario. This is because the channels as modeled assumed the existing cross-section. At many locations along the north-south roadways and at intersections, the adjacent land uses lie below the roadway crown and/or the top of channel bank. A significant amount of floodplain storage results which attenuate the peak discharges from tributary sub-basins as they move through the system.

Secondly, the impact of the Bessemer Ditch relative to interception and diversion of runoff away from the Mesa is not great. During the hydrology analysis, two cases were investigated. These were, (1) interception of all runoff from sub-basin south of the Bessemer Ditch and no connection to the downstream flow paths, and (2) no diversion, or a pass through of the runoff over the Bessemer Ditch and into the downstream flow paths. Increases in peak flow, usually less than 10 percent were noted between cases 1 and 2, with case 2 producing the higher flows for all frequencies.

Hydraulic Analysis and Flood History

A hydraulic structure inventory was conducted and the subsequent information was presented on 1-inch to 200-foot scale aerial mapping and entered in an index created to catalogue the information. For the most part, culverts exist under major roadways although at some intersections only a concrete pan has been installed. The inventory data has also been tabulated in a spreadsheet format. Size, type, condition and capacity is summarized in the database. The spreadsheets and mapping have been turned over to the Pueblo County Department of Public Works.

In the areas where a large number of reported drainage problems occur there is a high incidence of urban development upstream. Frequently, a local storm sewer system has been installed to handle a minor storm; but, the outfall is inadequate or is non-existent. Urban development tends to channelize runoff and concentrate it at a single location. This along with increased imperviousness results in the type of flooding noted on the Mesa.

Another typical drainage problem on the Mesa stems from stormwater ditches overtopping due to restrictions (undersized driveway culverts, blockage in the ditches, etc.) whereby the runoff does not return to the roadside ditch. Instead, the runoff follows the existing low point which may be across a roadway or down a driveway into private property and away from the pubic road right-of-way.

Much of the flooding of residences occurs because several subdivisions have been constructed along the historic low points and have finish floor elevations below the grade of the

adjacent roadways and ditch banks. The residential structures are mostly at or near flow line elevations of the adjacent streets. Reconstruction of curb cuts and berming on the upstream side of structures to prevent shallow flooding is being used extensively in many areas of the Mesa.

Research into the existence of any documented floodplains on the St. Charles Mesa established that none are defined. The primary resource for this research was the "Flood Insurance Studies for Pueblo County, Colorado", prepared by the Federal Emergency Management Agency (FEMA), revised 1986. A portion of the basin studied does lie within the St. Charles River 100-year floodplain and the Arkansas River 100-year floodplain. There are no regulated floodplain areas along the major flow paths which drain the Mesa. Areas of overflow flooding have been presented on the Preliminary Design drawings. These floodplains represent areas where runoff which exceeds the design capacity of the proposed system(s) would move out of the road right-of-way and into low lying areas adjacent to the roadways. The overflow floodplains have been presented for information purposes only and are not intended to establish regulatory floodplains subject to more stringent floodplain development standards.

Alternative Development

Alternative outfall plans have been examined that address the existing and future stormwater management needs of the basin. Quantitative and qualitative comparisons are presented in both narrative and tabular format, and a recommendation made as to which plan is most feasible to advance to preliminary design and eventual implementation.

During the alternative analysis it became evident that the basin had one general characteristic which influenced the existing drainageways form and function. The Mesa was originally settled as an irrigated agricultural area. Roads were developed between fields, along irrigation headwater, and along tailwater ditches. Consistent with an agricultural use the slopes across the Mesa are typically less than a half percent. Development which has occurred has in most cases blocked the natural or historic outfall path. Roadways are both gravel and paved, neither of which have much capacity to convey runoff before overtopping the adjacent roadside ditches and curb and gutter. At roadway intersections, flow splits can occur whereby a low runoff event would pass through the existing roadside ditch and/or culverts, while larger volume flow events would be split, or diverted, to low lying areas or a different direction down the intersecting street away from the existing systems.

General planning goals followed during the alternative plan development phase were:

(1)Identify storm water facilities which will reduce existing flooding problems within urbanized area(s);

- (2)the detrimental effects of runoff from urbanized areas;
- (3)area:
- (4)laterals:
- (5)
- (6) the water quality characteristics of the basin;
- Provide for a system which has cost feasibility; (7)
- (8) and,
- Provide for a system which will be adequate to serve future development. (9)

The alternative planning process began with the evaluation of general outfall planning alternatives. Alternatives which are generally available in the majority of urban drainage basins include:

- Do nothing, and/or floodplain regulation, (1)
- (2)Channelization,
- (3)Piped systems,
- Detention, on-site or off-site, (4)
- Combinations of the above. (5)

These concepts were evaluated for each major outfall path and regional sub-basin on the Mesa. Each of the above alternatives was evaluated for different recurrence intervals. At this time, there are no 100-year capacity facilities within the Mesa, except for the Bessemer Ditch which has the capacity to convey the 100-year discharge from areas upstream of the Ditch, assuming that the Ditch is only carrying the adjudicated flow at the time of a runoff event.

The handling of stormwater can be accomplished by the use of pipes, channels, detention basins, bridges, culverts and various other physical improvements. The use of any one or a combination of the above improvements is dependent upon the level of flow, topography, rightof-way and the character of the areas adjacent to the outfall paths. A qualitative discussion of the feasibility of the general drainage alternatives is summarized below:

Provide stormwater management within developing areas of the basin in order to reduce

Provide stormwater facilities which preserve and/or enhance the existing drainageways and areas adjacent to the drainageways which provide an environmental resource in the

Provide for separation of stormwater runoff from existing or abandoned irrigation

Identify facilities which will minimize future operation and maintenance costs;

Provide stormwater management facilities which will at least maintain and/or enhance

Provide for a system which is within the capability of being installed by County forces;

<u>Curb and Gutter</u>: In some cases use of a standard street section including 6" vertical curb will provide adequate capacity and channelization to prevent localized flooding during the 5year storm event or reduce required storm sewer sizes when used in combination.

Storm Sewers: Use of storm sewers is feasible within all proposed outfall systems as independent structures or in combination with curb and gutter or existing ditches. This conveyance alternative is somewhat limited by areas of extremely mild slopes (less than .3 percent), which causes the sizes of storm sewers to become very large, and in turn cost prohibitive. In general, storm sewers greater than 60-inches in diameter do not have a high degree of feasibility due to their cost and their impact upon utility relocations and street repaying.

Channels: Channels, including roadside ditches are the predominant existing drainage facility on the Mesa along all flow paths. Enlarging the existing roadside ditch sections to convey future development condition runoff will usually require enlarging numerous private drives. In some areas of the Mesa, undeveloped land still exists to construct a lined channel, however right-of-way acquisition can become a major deciding factor when implementing a channel system on the Mesa. Riprap lined and grasslined ditch sections are most commonly used, however concrete lining does have feasibility wherever the need to keep the acquisition of right-of-way to a minimum is desirable.

Detention: The type of detention basin will be dependent upon the volume and rate of flow; however, right-of-way and the characteristics of the area adjacent to a proposed detention basin plays a large role in this alternative's feasibility. Water quality is an important concern in light of the storm water discharge regulations, and a detention scheme has distinct advantages in this regard. There are three existing onsite detention basins on the Mesa.

<u>Combined Systems</u>: Combining storm sewers with roadside ditches and improved street sections is usually a feasible alternative in basins where development has blocked the historic outfall paths. For the St. Charles Mesa, storm sewers with a five year capacity in combination with the existing roadside ditch or street capacity can bring the total capacity to at least a 10-year level, and in some cases a 100-year level.

The conceptual alternatives developed were each modeled hydrologically to assess the impact on peak flow rates. In general, the historic peak flow condition at Santa Fe Drive (U.S. Highway 50, Business Route), was a primary factor in the alternative planning. Various detention and diversion schemes were evaluated in order to optimize the flow to downstream drainageways. As a starting point the 5-year existing condition flows were used in the alternative evaluation. A 5-year system is a typical design standard for minor or local storm drainage system design within urban areas. The 5-year system is capable of conveying, without surcharging, over 90 percent of all runoff events.

Coordination meetings were held throughout the study to address overall goals and specific concerns of those agencies and individuals asked to participate in the study. A public input meeting was held and specific concerns of the residents were discussed. Complaint forms were collected.

It has been determined that a system of outfall storm sewers is the most practical conveyance alternative for those major flow paths where existing development has already occurred. A piped system will require the least amount of new right-of-way acquisition and minimize disturbances to existing driveways and road intersections. This system will require that existing roadside ditches be connected to the storm sewer outfalls by means of intercepting inlets mostly sited at roadway intersections. The existing ditches serve to collect local flows generated within private property and from the County roadway right-of-way. Where existing structures lie below street grade, there is no option but to leave the existing roadside ditch in service.

Selected Outfall Systems Design

As a result of the alternative planning process, a selected outfall plan was determined for each of the major outfall paths within the St. Charles Mesa drainage basin. The outfall plan for each flow path has been presented on the preliminary design drawings contained at the rear of this report. The selected outfall plan for the St. Charles Mesa Basin includes the following general features:

- the 5-year capacity flow.
- adjacent driveway.
- roadside ditches at key design points. This spill structure would outfall to the St. Charles River.

Presented on Table 6-1 is the summary of peak discharges at all design points for the selected outfall plan condition. Sub-basin discharges are the same as shown on Table 3-5 presented in Section III of this report. Diversion of the 5-year flow across Santa Fe Avenue has been accounted for in the selected outfall plan hydrology model. A flow split has been modeled at 21st Lane, 23rd Lane, 25th Lane, 27th Lane and 29th Lane. The five-year flow has been

A combined system of storm sewers and roadside ditches capable of conveying Curb and gutter along existing streets where the street section is below the Inlets of at least 5-year capacity to intercept street flows and flows within Upgrading outfalls to the Bessemer Ditch in order to intercept the 100-year existing condition discharge from areas tributary to the Ditch. A spill structure located at Salt Creek is recommended in order to clear the Ditch of runoff from south Pueblo prior to entering the St. Charles Mesa basin. A spill structure at the headgate of the Bessemer Ditch siphon is recommended in order to separate runoff from ditch irrigation flows.

routed north for these outfall paths, and the flow greater than the 5-year flow has been routed along Santa Fe Avenue.

The use of onsite or regional detention must be implemented wherever future development is proposed. Due to the low feasibility of systems with capacity greater than the existing 5-year storm, future developments must maintain existing condition discharges for the 5- and 100-year frequencies. The existing detention basins in the Lakeside Estates subdivision should remain. The main purpose of the detention facilities is to reduce the peak discharges from developed land to historic, or existing conditions. Secondary benefits for regional and onsite basins come in the form of enhanced water quality, and open space benefits.

Costs to implement the preliminary design were estimated using the unit costs presented on Table 6-2. Utility costs have not been incorporated into the cost estimates. Land acquisition for channels or storm sewers have not been estimated. In general, most of the facilities proposed for the Mesa can be kept within existing easements or right-of-ways. In general, the land required for the storm sewer or channel improvements can be obtained for undeveloped areas via the development process. Total estimated cost for the recommended plan is \$12,566,894.

Implementation

The selected outfall plan has been presented on the preliminary design plans contained within the rear of this report. The planning and the design of these improvements is a key first step in implementing a comprehensive program for stormwater management for the basin on the St. Charles Mesa. The implementation of this plan will depend upon various factors, however the planning goals associated with the development of this plan should be reviewed whenever a portion of the system is proposed for construction. The primary goals are as follows:

Reduce local flooding problems;

Provide outfall drainage facilities to serve future developments and property owners;

Provide outfall drainage facilities which will convey runoff in a safe and efficient manner through existing developed areas of the Mesa;

Minimize the acquisition of additional public right-of-way associated with stormwater conveyance; and,

Minimize the cost of stormwater conveyance facilities funded solely by Pueblo County.

The review of the above goals will be needed in order to best prioritize the improvements and to better direct the limited amount of capital improvement funds which will be available for stormwater facilities on the Mesa.

The construction and implementation of the selected outfall systems should be driven by the following parameters;

Existing facility inadequacy within a given outfall basin; Level of flooding problems; Development pressure within outfall basin; Availability of funding; and,

Number of potential funding sources.

The selected outfall systems presented on the preliminary design plans should not be considered as final in their form. Each system should be reviewed in terms of system capacity, hydrologic response, right-of-way availability and routing options at the time the system(s) are proposed for final design and construction. Future development should be required to convey the five-year existing condition runoff to the dedicated outfall system by means of local streets and storm sewers.

The following steps are suggested prior to further design and construction of the systems identified in this plan.

1. Adoption of Drainage Criteria Manual: The City/County Drainage Criteria Manual referenced in this study should be reviewed, revised, and updated as necessary to allow for the eventual adoption by the County. This criteria is needed in order to help in the review and approval of future drainage plans to be prepared for future developments. The adoption of the drainage criteria will lead to more consistent design and construction of local stormwater systems.

2. Detention Basin Criteria Development: A criteria for the planning and design of onsite detention basins should be developed. There are several simplified methods which could be adopted and inserted into the Drainage Criteria Manual.

3. Adoption of Erosion Control Criteria: The future level of maintenance for the selected outfall systems will be heavily dependent upon the amount of sediment available to be washed into the stormwater systems. Currently, there are extensive amounts of agricultural ground which lies uncultivated. These areas need to prevent the erosion of unprotected soils into the streets, roadside ditch sections and storm sewer systems. New development can also cause significant land disturbance which can result in soil erosion.

4. Agreements with Ditch Company: The dependence upon the availability flow capacity within the Bessemer Ditch affects each of the selected outfall systems. Discussions with the Bessemer Ditch Company should be considered by the County prior to extensive amounts of new development proceeding within the Bessemer Ditch Basin. An initial project which needs to be considered jointly is the stormwater separation structure for the Bessemer Ditch at Salt Creek. Construction of this structure will ensure that the Ditch will only be carrying irrigation flows into the St. Charles Mesa.

The prioritization of improvements has been accomplished by reviewing the planning goals for each flow path. In general, the outfall storm sewers have the highest priority since they are needed now to address local drainage problems and will be needed upon development of land on the Mesa. In some instances development pressure may change the priority of an outfall storm sewer. The priority of systems has been categorized into three levels; (1) Immediate need; (2) Needed upon development of land within the basin; and (3) as required by correlated projects. Examples of these categories is presented in Section VII.

ST. CHARLES MESA DRAINAGE BASINS OUTFALL SYSTEMS PLANNING STUDY PRELIMINARY DESIGN REPORT AND IMPLEMENTATION PLAN

TABLE OF CONTENTS

HYDRAULIC STRUCTURE INVENTORY FLOOD HISTORY FLOOPLAINS BASIS OF ANALYSIS AND DESIGN

		INTRODUCTION	29
		GENERAL CONSIDERATIONS	29 29 30 31
	Page	PRELIMINARY MATRIX OF ALTERNATIVES	29
		DRAINAGE SYSTEM ALTERNATIVE	30
EXECUTIVE SUMMARY	i-vi	ALTERNATIVE ANALYSIS	31
		EVALUATION PARAMETERS	31
LIST OF TABLES	viii	DESIGN PARAMETERS AND GOALS	32
LIST OF FIGURES	viii		
SECTION I			
INTRODUCTION		SECTION VI	
		SELECTED OUTFALL SYSTEMS PLA	N
AUTHORIZATION, PURPOSE AND SCOPE	1		
GOALS AND OBJECTIVES	1	HYDROLOGY	38
MAPPING	2	REVEGETATION	38
ACKNOWLEDGEMENTS	2	MAINTENANCE	38
BIBLIOGRAPHY	2	STORMWATER DETENTION	38 38 39 39
		COST ESTIMATES	39
SECTION R		SECTION VII	
SECTION II		SECTION VII IMPLEMENTATION PLAN OF SELECTED OUTEA	II OVOTEMO
SECTION II STUDY AREA DESCRIPTION		SECTION VII IMPLEMENTATION PLAN OF SELECTED OUTFA	ALL SYSTEMS
STUDY AREA DESCRIPTION	3	IMPLEMENTATION PLAN OF SELECTED OUTFA	
STUDY AREA DESCRIPTION BASIN DESCRIPTION	3	IMPLEMENTATION PLAN OF SELECTED OUTFA Implementation Tasks	45
STUDY AREA DESCRIPTION BASIN DESCRIPTION CLIMATE	3 3 3	IMPLEMENTATION PLAN OF SELECTED OUTFA	
STUDY AREA DESCRIPTION BASIN DESCRIPTION CLIMATE SOILS AND GEOLOGY	3 3 3	IMPLEMENTATION PLAN OF SELECTED OUTFA Implementation Tasks Prioritization	45
STUDY AREA DESCRIPTION BASIN DESCRIPTION CLIMATE	3 3 3 4	IMPLEMENTATION PLAN OF SELECTED OUTFA Implementation Tasks	45
STUDY AREA DESCRIPTION BASIN DESCRIPTION CLIMATE SOILS AND GEOLOGY	3 3 3 4	IMPLEMENTATION PLAN OF SELECTED OUTFA Implementation Tasks Prioritization PRELIMINARY DESIGN DRAWINGS	45 46
STUDY AREA DESCRIPTION BASIN DESCRIPTION CLIMATE SOILS AND GEOLOGY PROPERTY OWNERSHIP AND IMPERVIOUS LAND DENSITIES	3 3 3 4	IMPLEMENTATION PLAN OF SELECTED OUTFA Implementation Tasks Prioritization PRELIMINARY DESIGN DRAWINGS	45 46
STUDY AREA DESCRIPTION BASIN DESCRIPTION CLIMATE SOILS AND GEOLOGY PROPERTY OWNERSHIP AND IMPERVIOUS LAND DENSITIES SECTION III	3 3 3 4	IMPLEMENTATION PLAN OF SELECTED OUTFA Implementation Tasks Prioritization PRELIMINARY DESIGN DRAWINGS	45 46
STUDY AREA DESCRIPTION BASIN DESCRIPTION CLIMATE SOILS AND GEOLOGY PROPERTY OWNERSHIP AND IMPERVIOUS LAND DENSITIES	3 3 3 4	IMPLEMENTATION PLAN OF SELECTED OUTFA Implementation Tasks Prioritization PRELIMINARY DESIGN DRAWINGS	45 46
STUDY AREA DESCRIPTION BASIN DESCRIPTION CLIMATE SOILS AND GEOLOGY PROPERTY OWNERSHIP AND IMPERVIOUS LAND DENSITIES SECTION III HYDROLOGIC ANALYSIS	3 3 3 4	IMPLEMENTATION PLAN OF SELECTED OUTFA Implementation Tasks Prioritization	45 46
STUDY AREA DESCRIPTION BASIN DESCRIPTION CLIMATE SOILS AND GEOLOGY PROPERTY OWNERSHIP AND IMPERVIOUS LAND DENSITIES SECTION III HYDROLOGIC ANALYSIS INTRODUCTION	3 3 3 4 8	IMPLEMENTATION PLAN OF SELECTED OUTFA Implementation Tasks Prioritization PRELIMINARY DESIGN DRAWINGS	45 46
STUDY AREA DESCRIPTION BASIN DESCRIPTION CLIMATE SOILS AND GEOLOGY PROPERTY OWNERSHIP AND IMPERVIOUS LAND DENSITIES SECTION III HYDROLOGIC ANALYSIS INTRODUCTION COLORADO URBAN HYDROGRAPH PROCEDURE	3 3 3 4 8 8 9	IMPLEMENTATION PLAN OF SELECTED OUTFA Implementation Tasks Prioritization PRELIMINARY DESIGN DRAWINGS	45 46
STUDY AREA DESCRIPTION BASIN DESCRIPTION CLIMATE SOILS AND GEOLOGY PROPERTY OWNERSHIP AND IMPERVIOUS LAND DENSITIES SECTION III HYDROLOGIC ANALYSIS INTRODUCTION COLORADO URBAN HYDROGRAPH PROCEDURE CHANNEL ROUTING	3 3 4 4 8 8 9 9	IMPLEMENTATION PLAN OF SELECTED OUTFA Implementation Tasks Prioritization PRELIMINARY DESIGN DRAWINGS	45 46
STUDY AREA DESCRIPTION BASIN DESCRIPTION CLIMATE SOILS AND GEOLOGY PROPERTY OWNERSHIP AND IMPERVIOUS LAND DENSITIES SECTION III HYDROLOGIC ANALYSIS INTRODUCTION COLORADO URBAN HYDROGRAPH PROCEDURE	3 3 4 4 8 8 9 9 9	IMPLEMENTATION PLAN OF SELECTED OUTFA Implementation Tasks Prioritization PRELIMINARY DESIGN DRAWINGS	45 46

SECTION IV HYDRAULIC ANALYSIS

27
27
27
28

SECTION V ALTERNATIVE DEVELOPMENT

ST. CHARLES MESA DRAINAGE BASINS OUTFALL SYSTEMS PLANNING STUDY PRELIMINARY DESIGN REPORT AND IMPLEMENTATION PLAN

LIST OF TABLES

LIST OF FIGURES Page Table 3-1 **One-hour Point Rainfall** 11 Table 3-2 Uniform Percent Impervious Values 11 Figure 2-1 Vicinity Map Table 3-3 Sub-basin for CUHP Input, Existing Basin Conditions 12 Figure 2-2 Hydrologic Soils Map Table 3-4 Sub-basin for CUHP Input, Future Basin 14 Figure 2-3 Existing Percent Impervi 16 Table 3-5 Sub-basin Discharges, Existing Development Conditions Figure 2-4 Future Percent Impervio 17 Table 3-6 Sub-basin Discharges, Future Development Conditions Figure 3-1 **Regional Sub-basins** Table 3-7 18 Design Point Discharges, Existing Development Conditions Figure 3-2 SWMM Flow Schematic Table 3-8 20 Design Point Discharges, Future Development Conditions Figure 3-3 SWMM Flow Schematic Table 5-1 Evaluation of Conceptual Alternatives, Floodplain Regulation 34 SWMM Flow Schematic Figure 3-4 Table 5-2 Evaluation of Conceptual Alternatives, Channelization 35 Figure 3-5 SWMM Flow Schematic 36 Table 5-3 Evaluation of Conceptual Alternatives, Piped Systems Table 5-4 Evaluation of Conceptual Alternatives, Onsite or Regional Detention37 Table 6-1 Design Point Discharges, Selected Outfall Plan Conditions 40 Unit Costs 43 Table 6-2 Selected Outfall Plan, Preliminary Design Cost Estimate 44 Table 6-3 47 Table 7-1 Prioritization of Improvements

ST. CHARLES MESA DRAINAGE BASINS OUTFALL SYSTEMS PLANNING STUDY PRELIMINARY DESIGN REPORT AND IMPLEMENTATION PLAN

	Page
	5
	5
viousness	6
ousness	7
	22
ic	23
ic	24
ic	25
ic	26

ST. CHARLES MESA DRAINAGE BASINS OUTFALL SYSTEMS PLANNING STUDY PRELIMINARY DESIGN REPORT AND IMPLEMENTATION PLAN

TABLE OF CONTENTS

HYDRAULIC STRUCTURE INVENTORY FLOOD HISTORY FLOOPLAINS BASIS OF ANALYSIS AND DESIGN

			SECT ALTERNATIVE
EXECUTIVE SUMMARY LIST OF TABLES LIST OF FIGURES	<u>Page</u> i-vi vii viii		INTRODUCTION GENERAL CONSIDERATIONS PRELIMINARY MATRIX OF ALTERNATIVE DRAINAGE SYSTEM ALTERNATIVE ALTERNATIVE ANALYSIS EVALUATION PARAMETERS DESIGN PARAMETERS AND GOALS
SECTION I INTRODUCTION			
AUTHORIZATION, PURPOSE AND SCOPE GOALS AND OBJECTIVES MAPPING ACKNOWLEDGEMENTS BIBLIOGRAPHY	1 1 2 2 2	14	SECTI SELECTED OUTFA HYDROLOGY REVEGETATION MAINTENANCE STORMWATER DETENTION COST ESTIMATES
SECTION II STUDY AREA DESCRIPTION			SECTI IMPLEMENTATION PLAN OF S
BASIN DESCRIPTION CLIMATE SOILS AND GEOLOGY PROPERTY OWNERSHIP AND IMPERVIOUS LAND DENSITIES	3 3 3 4		IMPLEMENTATION PLAN OF S Implementation Tasks Prioritization PRELIMINARY DESIGN DRAWINGS
SECTION III HYDROLOGIC ANALYSIS			Appendix A: Sample SWMM Input, Baseline F Appendix B: Sample SWMM Input, Selected C
INTRODUCTION COLORADO URBAN HYDROGRAPH PROCEDURE CHANNEL ROUTING RESULTS OF HYDROLOGIC ANALYSIS COMPARISON TO PREVIOUS STUDIES	8 8 9 9 10		Appendix C: Sample Detention Basin Design C

SECTION IV HYDRAULIC ANALYSIS

27
27
27
28

SECTION V ATIVE DEVELOPMENT

VES 2 3 3 3 3 3		29
3 3 3 3		29 29
3 3 3 3	VES	29
3		30
		31
3		31
		32

SECTION VI UTFALL SYSTEMS PLAN

1	38
-	38
	38
-	39
-	39

SECTION VII N OF SELECTED OUTFALL SYSTEMS

4	15
4	16

seline Hydrology Condition lected Outfall Plan Condition Design Criteria

I. INTRODUCTION

Authorization, Purpose and Scope

The St. Charles Mesa Drainage Basins Outfall Systems Planning Study was authorized by the Pueblo County Department of Public Works. The specific tasks were performed in accordance with the terms of agreement between Pueblo County and Kiowa Engineering, dated December 27, 1993.

The purpose of the study was to analyze the existing and future drainage conditions for the drainage basins on the St. Charles Mesa, to develop alternative outfall planning concepts, to prepare a preliminary design of the preferred outfall alternatives, and to prepare a plan for implementation of the improvements identified when conducting this study. The planning for drainage facilities within the St. Charles Mesa drainage basins was initiated in November, 1992. The preparation of topographic mapping, hydrology, drainage facility inventory and development of outfall alternatives within the study area initially started under a contract between the County and Abel Engineering Professionals, Inc., dated October 3, 1991. The information prepared under the initial contract has been incorporated into this report to the greatest extent practical. The St. Charles Mesa Outfall Systems Implementation Plan, Alternative Design Report and St. Charles Mesa Final Report Drainage Implementation Plan, was delivered to the County in September of 1993. Upon review of the final report, the County found that additional effort was needed to further identify and develop the most feasible preliminary outfall designs and to develop the final implementation plan.

The scope of the entire study, inclusive of the scope authorized by the County with Kiowa Engineering contained the following tasks:

Alternative Outfall Planning Phase:

- Meet periodically with the sponsors to obtain information, present study findings, and 1 discuss results of the planning tasks.
- 2. Contact agencies and/or individuals who have knowledge or specific interest in the study area.
- Prepare hydrologic analysis for the existing and future development basin conditions 3. without any proposed facilities in place (i.e. base line condition hydrology).
- Prepare topographic mapping for using in the development of alternative outfall systems. 4.

- 5. peak discharges.
- 6. public right-of-way and along identifiable outfall paths.
- 7.
- 8. constraints and issues.
- 9. Prepare a written outfall systems alternative evaluation report.

Preliminary Design Phase:

- 1. further evaluation.
- 2. Prepare preliminary design base mapping for outfall system alignment(s):
- 3.
- 4. Prepare preliminary design of selected outfall facilities.
- 5. Prepare construction cost estimates.
- 6. preliminary outfall systems.
- 7. the selected plan and discussing the items examined in the study.

Goals and Objectives

- 1.
- 2. development of the study area proceeds.

Conduct hydraulic analysis along the major outfalls within the study area to ascertain capacities of existing structures, review available floodplain information and floodplain studies, determine location of flooding problems, and analyze hydraulic impacts of future

Inventory the size, type, condition and location of existing facilities lying within the

Develop outfall system alternatives which address future development impacts.

Evaluate alternatives based upon cost, constructability, right-of-way, and maintenance

Meet with the County sponsors to select and refine the outfall system alternatives for

Refine hydrology and hydraulic analysis for selected alternative outfall plan(s).

Prepare conceptual implementation plan identifying the priority of contacting the

Prepare written report with accompanying drawings showing the preliminary design of

Reduce the potential for flooding of private properties, roadways and other structures which lie adjacent to the major outfall paths within the St. Charles Mesa drainage basins, for both the existing and future development conditions.

Determine the required storm sewers and roadside channel sections for the major outfall paths which will remain adequate to convey runoff in a safe and stable manner as the volume, rate and duration of stormwater runoff changes as the

- 3. Develop cost effective outfall systems that can be phased into construction as the existing drainage situation warrants and as the study area develops.
- Develop outfall system improvements compatible with the existing public right-4. of-ways and easements within the study area so as to minimize the disturbance of streets, utilities and private property along the existing outfall paths.

Mapping

The U. S. Geological Survey (USGS) 7-1/2-minute quadrangle maps, utilized in combination with aerial topographic mapping dated 1992, were used in development of the technical aspects presented in this report. The topographic mapping was prepared from aerial photography. The topographic mapping was compiled at a scale of 1-inch to 200-feet horizontal scale, with a contour interval of two-feet.

The location of drainageways, storm sewers and culverts were field verified when the existing drainage facilities were inventoried. The existing facilities were noted on the topographic mapping. Field reviews of existing and proposed facilities were conducted. Photographs along key outfall paths.

Acknowledgements

Kiowa Engineering wishes to acknowledge the various individuals who assisted in the preparation of the study. Representative of from the Department of Public Work and the Department of Planning and Development provided information used in the preparation of the alternative and preliminary design reports. A listing of those individuals coordinated with has been presented below.

Name

Representing

John Simmer Alfred Randall Charles Finley Kim Headley William Mullen Lee Simpson Abel Tapia

Pueblo County Department of Public Works Pueblo County Department of Public Works Pueblo County Planning and Development Department Pueblo County Planning and Development Department Bessemer Ditch Company St. Charles Mesa Water District Abel Engineering Professionals, Inc.

The following members of the project team contributed to the preparation of this report.

Mr. Richard N. Wray, P.E.	P
Ms. Cheryl A. Bean, P.E	Р
Ms. Elizabeth A. Klein	Т
Ms. Rusty Shukle	A

Bibliography

The following reports were referenced during the course of preparing this report:

- Soil survey for Pueblo County, Colorado, dated June 1979. (1)
- (2)WRC, Inc., dated may 1986.
- (3)Management Agency, dated 1979.
- (4) Inc., dated June, 1979.
- Wastewater Facility Plan, prepared by GMS, Inc., dated July, 1990. (5)
- (6) Engineering, Inc., dated June, 1992 and revised July, 1992.
- (7)September, 1993.

Project Manager Project Engineer Technician/Drafting Administrative/Word Processing

Preliminary City of Pueblo Drainage Criteria Manual, prepared by the City of Pueblo and

Flood Insurance Study for Pueblo County, Colorado, prepared by the Federal Emergency

St. Charles Mesa Master Drainage Plan prepared by Southern Colorado Engineering,

St. Charles Mesa Outfall Systems Alternative Development Report, prepared by Abel

St. Charles Mesa Final Report Drainage Implementation Plan, Volume #2, Chapter 6, Working Implementation Plan, prepared by Abel Engineering, Inc., dated revised

II. STUDY AREA DESCRIPTION

The St. Charles Mesa Drainage Basin is a rural area in unincorporated Pueblo County and is located near the confluence of the Arkansas and St. Charles rivers. The basin contributes runoff to both the Arkansas and St. Charles rivers. The basin is largely developed with large lot, single family and agricultural uses. The basin is bisected by the business route of US Highway 50 which runs in an east-west direction. The County anticipates that the basin will continue to be developed with increasing land use densities in the future. The existing drainage system(s) which are inadequate for the majority of the basin will be overtopped on a more frequent basis as the basin develops. Figure 2-1 shows the location of the St. Charles Mesa basin.

Basin Description

The St. Charles basin covers a total of 16 square miles in unincorporated Pueblo County, Colorado. The basin drains generally to the north, towards the Arkansas River. A portion of the study area flows directly to the St. Charles River, or lies within the St. Charles River floodplain. The Bessemer Ditch traverses the basin from west to east. The Ditch enters the basin in the vicinity of County Farm Road and Aspen Road, and exits the basin at the siphon under the St. Charles River. This Ditch has the capability of diverting a portion of, or all of the existing runoff which originates in the southern most areas of the St. Charles Mesa drainage basin. In fact, the Bessemer Ditch imports urban runoff from the southern portions of the City of Pueblo.

Slopes on the mesa range from moderately steep to steep south of the Bessemer Ditch, and mild to flat slopes within basins lying north of the Ditch. The predominant drainage facilities are a system of roadside swales and ditches ranging in depth from 1-foot to 4-feet. Prior to current development the ditches were, or still are, irrigation laterals. The ditches are usually filled with vegetation. In areas where the agricultural need for the laterals has ended, the ditches have been modified to carry storm drainage. The roadside ditches are crossed at numerous driveways and roadways. In some locations residential structures abutting the roadways lie below the roadway crown and cause the swales to spill towards the structures and pond in low lying fields or yards. Several cross culverts under Santa Fe Avenue (US 50), can carry runoff north along the various roadways, however flow splits may occur sending runoff east on Santa Fe Avenue as well. Near the north edge of the basin, the Mesa outfalls to the floodplain of the Arkansas River via natural drainage swales. The swales which drain the Mesa

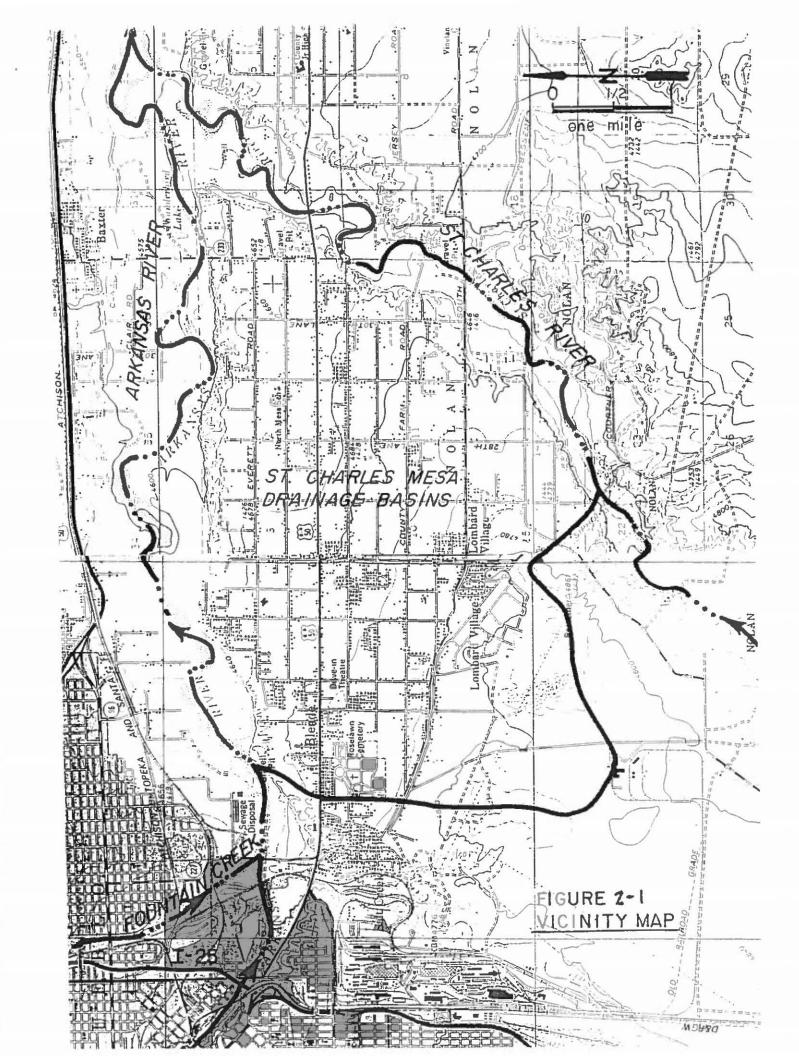
to the Arkansas River floodplain are highly susceptible to erosion because of their steepness (greater than 10 percent), and lack of vegetation to hold the natural banks in place.

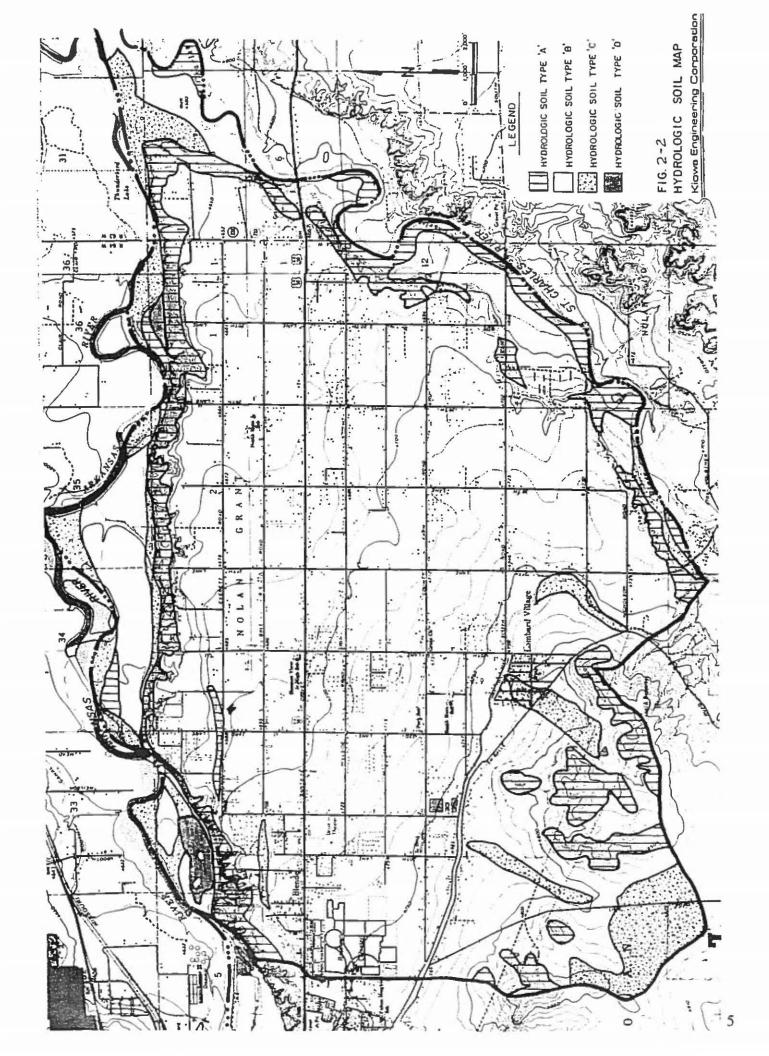
Development in the basin consists of agricultural and open space, rural residential, low to medium density single family residential, institutional, industrial and commercial uses. The predominant existing use is agricultural and rural residential which makes up over 80 percent of the drainage basin. The existing single family areas have developed in a random manner and have provided little or no storm drainage infrastructure. In some areas, the single-family developments have blocked historic flow paths. Because the basin was historically used for agricultural purposes, there are numerous locations where existing (or remnants of) irrigated fields are very flat and cause excess runoff to pond. Urbanization has increased this tendency to the point where habitable structures are impacted by shallow flooding, mud and debris damages.

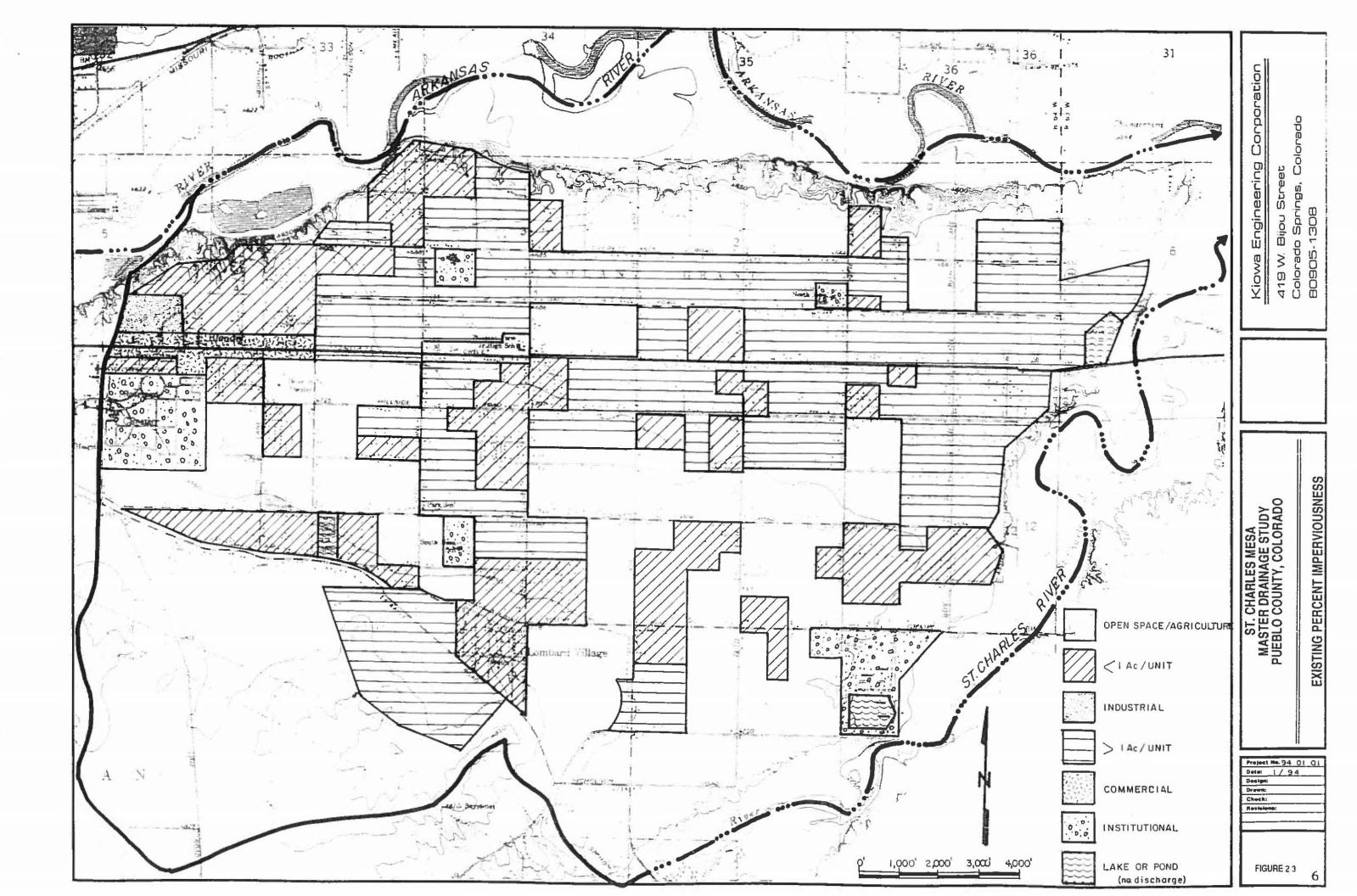
The maximum basin elevation is approximately 4830 feet above mean sea level, and falls to approximately elevation 4650 at the edge of the Mesa. The basin where it is undeveloped is covered by native vegetation typical of arid areas of Southern Colorado. Vegetation typical of agricultural and single-family uses are found mainly north of the Bessemer Ditch. Vegetative cover ranges from poor-to-fair in the undeveloped areas to fair-to-good in the developed areas of the basin.

<u>Climate</u>

This area of Pueblo County can be described, in general as high plains, with total precipitation amounts typical of a semi-arid region. Winters are generally cool and dry. Precipitation ranges from 10 to 12 inches per year, with the majority of this precipitation occurring in spring and summer in the form of rainfall. Thunderstorms are common during the summer months, and are typified by quick-moving low pressure cells which draw moisture from the Gulf of Mexico into the region. Average temperatures range from about 30 F in the winter to 80 F in the summer. Thunderstorms are the most frequently occurring runoff producing event. These storms can be of short duration but of extremely high-intensity.


Soils and Geology


Soils within the St. Charles basin vary between soil types A through D, as identified by the U. S. Department of Agriculture, Soil Conservation Service. The predominant soil groupings are in Hydrologic Soils Group B, which cover approximately 90 percent of the basin. These soils are highly permeable and generally result in low rates of excess runoff until they become saturated. The soils consist of deep, well drained soils that formed in alluvium and residium, derived from sedimentary rock. The soils have high to moderate infiltration rates, and are extremely susceptible to wind and water erosion where poor vegetation cover exists. In undeveloped areas, the predominance of Type B soils give this basin a lower runoff per unit area as compared to basins with soil dominated by Types C and D. Presented on Figure 2-2 is the Hydrologic Soil distribution map for the St. Charles Mesa Basin basin.


Property Ownership and Impervious Land Densities

Property ownership within the St. Charles Mesa basin are mostly private. South of the Bessemer Ditch the basin is almost totally undeveloped, and has limited agriculture activity. North of the Ditch, rural residential and agricultural uses predominate. Along US Highway 50 in what is known as the Blende area, commercial and single-family uses exist. Where single-family development has occurred, densities range from three to five units per acre. The basin is gridded by local streets of either a north/south or east/west orientation. The grid street pattern is responsible for the generally rectangular shape of the sub-basins in the drainage area. With the exception of flow which enters public roadways there are no drainageway easements or right-of-ways along any of the major flow paths identified in this study. Roadway and utility easements abutting or crossing the major drainageways occur most frequently in the portion of the basin lying north of the Bessemer Ditch.

Land use information for the existing and future conditions were reviewed as part of the planning effort. The existing land use information was compiled through field review and examination of the topographic maps prepared for this study. The future land use information was compiled using planning maps, zoning information and through consultation with Pueblo County. This information is used in the hydrologic analysis to predict runoff rates and volumes for the purposes of facility evaluation. The identification of land uses abutting the flow paths and roadways is also useful in the identification of feasible outfall plans for the Mesa. Presented on Figure 2-3 is the existing land use map for the St. Charles Mesa basin. Presented on Figure 2-4 is the proposed land use map used in the evaluation of impervious land densities discussed in the hydrologic section of this report. Figure 2-4 is not intended to reflect the future zoning for land use policies of Pueblo County.

III. HYDROLOGIC ANALYSIS

Introduction

A hydrologic analysis was conducted in order to determine peak discharges and runoff volumes for various storm types, and basin development conditions. This data was used in the evaluation of existing flood problems, and in the evaluation of alternative outfall plans. A technical addendum has been prepared which contains the detailed computer output for the various frequencies.

The hydrology data and results in this section represent the baseline hydrologic conditions. The means that the existing and future development hydrology has been determined by routing the sub-basins through the existing flow paths and that no improvements to the drainage facilities have been assumed in the modelling. No diversions or flow splits are assumed in the baseline hydrologic condition.

Colorado Urban Hydrograph Procedure

The runoff model used to determine the peak flows and volumes within the study area was the Colorado Urban Hydrograph Procedure (CUHP), in combination with the Stormwater Management Model (SWMM). Peak flows were predicted for 114 sub-basins and runoff hydrographs were developed for the 2-, 5-, 10-, and 100-year recurrence intervals using the CUHP-PC computer model. The sub-basin hydrographs were routed through the major flow paths using the UDSWM2-PC computer model.

Basin Characteristics

The study area subject to the hydrologic evaluation is the St. Charles Mesa Drainage Basin. The basin is generally divided into four regional basins. The regional basins are shown of Figure 3-1. The St. Charles and Arkansas River basins are direct flow areas to these rivers. Many of the direct flow basins lie within the floodplains of the these Rivers, or are relatively small sub-basins which lie at the northern and eastern edges of the Mesa. The Bessemer Ditch regional sub-basin represents those areas which lie south of the Ditch as it traverses the St. Charles Mesa basin. The existing flow which originates in these basins has been assumed to be intercepted by the Ditch. However, in a flooding event, the Ditch could be full and lacking adequate capacity to intercept the sub-basin flows and divert them to the St. Charles River at the Ditch siphon. In this case runoff could flow directly over the Ditch and enter the Santa Fe Avenue regional sub-basins. The Santa Fe Avenue regional sub-basins collect runoff originating north of the Bessemer Ditch and south of Santa Fe Avenue. For the purposes of modelling the baseline hydrologic conditions for the basin, that runoff reaching Santa Fe Avenue would be conveyed north to the Arkansas basins via the roadway, channels and storm sewers which exist. For the most part, the sub-basins lying on the St. Charles Mesa are bounded by roadways. The sub-basins are linked together by roadside ditches and culverts. At many of the intersections ponding is possible because the roadways are physically higher than the adjacent ground. Driveway culverts which cross over the roadside ditches also cause runoff to pond in low spots, away from the main flow path. Because of this, runoff which may be concentrated at a point will

be attenuated by channel and overbank storage as it is conveyed through the downstream subbasins.

Colorado Urban Hydrograph Procedure

The input data for CUHP include rainfall, imperviousness, basin area, basin length, shape factor, soil infiltration, and surface storage. The input data were prepared using the guidelines and values recommended in the Urban Storm Drainage Criteria Manual (USDCM), the Preliminary City of Pueblo Storm Drainage Criteria Manual, and the users manual for the CUHP-PC computer program. The basin area, length, length to centroid, amount of impervious area, proportion of soil types and weighted basin slopes were measured and input files prepared using Computer Aided Design and Drafting (CADD) with an input data preparation program (CUHP-CAD). Discussions of specific input parameters follow.

1. Design Rainfall

The design rainfall for the study was determined using the procedures outlined in the City of Pueblo Storm Drainage Criteria Manual. One hour point rainfall values for each basin were determined. The 1-hour point rainfall depths were then distributed over a 2-hour interval. The 1-hour point rainfall data is shown on Table 3-1. The point rainfall data is generally used for sub-basin less than 6 square miles. Most of the basins modeled were smaller than 100 acres. Even though sub-basin peak discharges were developed using the point rainfall and the 2-hour storm distributions, it is recommended that the point rainfall results be used in the hydraulic analysis and outfall system(s) planning.

2. Impervious Land Density

The amount of impervious area within each sub-basin was estimated for two conditions, namely; (1) Existing development, and (2) future development. Existing development within the St. Charles Mesa basin is predominantly open space, agricultural and rural residential (lots exceeding 1 acre in size). The future condition development will consist mainly of single family residential with lots greater than 1 acre in size. Commercial uses now and in the future occur along Santa Fe Avenue. The projected land use data was obtained using zoning and comprehensive planning information provided by the Pueblo County Planning and Development Department. The future imperviousness for each of the sub-basins was estimated by reviewing the available land use data and assigning values of impervious area to each land use type. Presented on Table 3-2 are the percent impervious values input to the computer model. The land uses for existing and future development conditions were presented previously on Figures 2-3 and 2-4 contained in Section Π of this report.

3. Basin Characteristics

Sub-basins were delineated on the 1-inch to 200-foot scale topographic mapping prepared for this study. The sub-basin boundaries were then superimposed on a 1-inch to 1000foot scale USGS map. The sub-basin boundaries were established based upon physical drainage boundaries such as high points or roadways.

Sub-basin areas were measured using the CUHP-CAD computer input program. The measurement process utilizes a digitizer and an IBM-PC compatible computer. Sub-basin length, and length to centroid were also measured using the CAD and CUHP-CAD system. The sub-basin delineations are presented on Exhibit 1 contained within the map pocket at the rear of this report.

Sub-basin impervious areas were obtained by overlaying the land use information of the sub-basin delineation map and proportioning the impervious percentages. Contained within the Hydrology Appendix are the weighted percent impervious calculations for the existing and future basin development conditions.

The CUHP model requires adjusting the slope of the basin to account for slope variations along the flow path. The procedure is described in the CUHP-PC manual. Work sheets for the weighted slope calculations used in the CUHP model are contained in the technical addendum.

Impervious area surface storage and pervious area surface storage were estimated to be 0.1 inch and 0.5 inches, respectively. These values are consistent with the recommendations found in the Pueblo County Drainage Criteria Manual.

Infiltration rates were determined by overlaying the soils map (Figure 2-2), on the subbasin map (Exhibit 1), and proportioning the amounts of soil type and infiltration rates. An initial infiltration rate of 4.77 inches per hour with a decay rate of .0018 was applied in the CUHP modeling of the sub-basins.

Presented on Tables 3-3 and 3-4 are the CUHP sub-basin data input for the CUHP computer model for the baseline hydrologic conditions.

Channel Routing

Individual sub-basin hydrographs were routed down the drainage flow paths using the UDSWM2-PC computer model. The drainage system was modeled using a system of channels and direct flow elements. The channel input includes length, slope, cross-section and roughness coefficients. This information was obtained during the Drainage structure inventory process and by using the 2-foot contour interval topographic mapping. Direct flow elements do not route upstream elements but instead directly add upstream hydrographs to give a direct translation of incoming flows. The SWMM channel system is presented on Exhibit 1.

For the baseline hydrology conditions, no improved channels were assumed in the SWMM model for either the existing or future development conditions. The alternative outfall systems did however incorporate improved channel sections, which will be discussed in a later section of the report. Lengths were measured from the detailed topography. Typical crosssections of the channels were measured in the field. Overbank channels were developed using the topographic mapping and field inspection. Roughness coefficients were estimated based upon equation 2 in the UDSWM2-PC manual.

Presented on Figures 3-2 through 3-5 are the flow path diagrams for each of the regional sub-basins. These figures show schematically what was input to the UDSWM2-PC computer program. Contained within Appendix A is the input data for the baseline hydrologic condition SWMM model.

Results of the Hydrologic Analysis

Presented on Tables 3-5 and 3-6 are the peak discharges for the sub-basins defined for the St. Charles Mesa drainage basin. Complete CUHP output for the 100-year existing and future development conditions are contained within Technical Addendum to this report. The Hydrologic Sub-basin Map which illustrates the basin boundary, channel routing elements, design points and sub-basin locations is contained within the map pocket at the rear of the report (Exhibit 1). A summary of flow rates for key design points is presented on Tables 3-7 and 3-8. The results show several impacts upon the hydrology for the Mesa because of urbanization. Firstly, there are significant increases in peak discharge and volume for the

individual sub-basins which will develop from agricultural use and open space into single-family residential. The impact upon the peak flows along the receiving drainage paths (i.e., the Santa Fe Drive flow path and along the north south roadways), is not as significant in the developed scenario. This is because the channels as modeled assumed the existing cross-section. At many locations along the north-south roadways and at intersections, the adjacent land uses lie below the roadway crown and/or the top of channel bank. A significant amount of floodplain storage results which attenuate the peak discharges from tributary sub-basins as they move through the system. Therefore, as the model predicts and as the storm drainage problems along the major flow paths have shown, a relatively constant peak discharge is estimated. The duration of the runoff along the flow paths and roadways is extended by the floodplain storage and could last two to three hours after the peak discharge passes.

Secondly, the impact of the Bessemer Ditch relative to interception and diversion of runoff away from the Mesa is not great. During the hydrology analysis, two cases were investigated. These were, (1) interception of all runoff from sub-basin south of the Bessemer Ditch and no connection to the downstream flow paths, and (2) no diversion, or a pass through of the runoff over the Bessemer Ditch and into the downstream flow paths. Increases in peak flow, usually less than 10 percent were noted between cases 1 and 2, with case 2 producing the higher flows for all frequencies. Flow attenuation and the lagging of peaks through the flow paths are the primary reasons for this. Tables 3-7 and 3-8 reflect interception of runoff by the Bessemer Ditch (case 1). The practicality of utilizing the Ditch for the conveyance of urban runoff is discussed in later sections of this report. No importation of flow from urbanized areas in the City of Pueblo via the Ditch was assumed in the modeling.

Comparison to Previous Studies

Comparison to the 1979 St. Charles Mesa Drainage Plan with regards to hydrology is difficult. The 1979 study used a different hydrology model, a different rainfall pattern and storm duration, and no channel routing was performed. Consequently, there are few, if any common design points between this study and the 1979 study to compare peak discharges. Peak discharges for the 5-year and 10-year event were estimated in the 1979 study. As with this study, the 1979 study found that urbanization of the Mesa would increase peak discharges and volumes along the major drainageways and flow paths.

There are no other known studies which have been completed for the flood hydrology of the St. Charles Mesa Drainage Basin.

Table 3-1 One-hour Point Rainfall

and the second se			
Frequency	Rainfall Depth (in.)	Land Use Category	Uniform % Imperviousnes
-year	1.13	Single-Family Residential	25-30
	1.50	Large lot Residential/Agricultural	5-15
	1.73	Commercial	90-95
	2.67	Industrial	95
		Institutional	50
		Dedicated Open Space/Park	5-10

Table 3-2: Uniform Percent Impervious Values

TABLE 3-3:

SUB-BASIN DATA FOR CUHP INPUT

ST. CHARLES MESA DRAINAGE BASINS, EXISTING CONDITIONS

TABLE 3-3: SUB-BASIN DATA FOR CUHP INPUT ST. CHARLES MESA DRAINAGE BASINS, EXISTING CONDITIONS

SUB-BASIN #	AREA	LENGTH	LENGTH TO CENTROID	EXISTING % IMP.	SLOPE	INITIAL INFIL RATE	DECAY RATE	FINAL INFIL RATE	SUB-BASIN #	AREA	LENGTH	LENGTH TO	EXISTING %	SLOPE	INITIAL INFIL	DECAY RATE	FI
	(sm)	(mi)	(mi)		(ft/ft)	(in.)		(in.)				CENTROID	EMP.		RATE		R
						Contraction of the	ax		······································	(sm)	(mi)	(mi)		(ſt/ſt)	(in.)		(
1	0.198	0.57	0.30	5.0	0.003	4.77	.0018	0.81	10	0.126	0.44	0.75					
2	0.317	0.74	0.36	5.0	0.007	4.18	.0018	0.67	40	0.126	0.64	0.35	39.3	0.002	4.50	.0018	(
3	0.268	0.80	0.48	5.0	0.008	4.21	.0018	0.60	41 42	0.082	0.50	0.26	30.0	0.016	4.54	.0018	(
4	0.143	0.72	0.41	5.0	0.017	4.54	.0018	0.69	42	0.082	0.73	0.43	23.0	0.008	4.53	.0018	(
5	0.148	0.81	0.44	5.0	0.027	4.59	.0018	0.68	45	0.074	0.55	0.21	15.0	0.018	4.58	.0018	(
6	0.193	0.50	0.20	5.0	0.014	4.50	.0018	0.60	45	0.074	0.49	0.22	5.0	0.016	4.66	0018	0
7	0.021	0.16	0.06	5.0	0.025	4.50	.0018	0.60	45		0,70	0.30	5.0	0.010	4.47	.0018	C
S	0.300	0.70	0.33	5.0	0.022	4.60	.0018	0.77		0.143	0.66	0.26	5.0	0.005	4.41	.0013	(
9	0.099	0.31	0.16	10.0	0.014	4.08	.0018	0.62	47	0.089	0.30	0.10	5.0	0.021	4.27	_0013	0
10	0.216	0.54	0.37	10.0	0.034	4.58	.0018	0.66	48 49	0.184	0.44	0.18	5.0	0.017	4.24	.0018	0
11	0.266	0.93	0.48	6.7	0.020	4.62	.0018	0.70	50	0.214	0.47	0.16	5.0	0.045	4.53	.0018	0
12	0.027	0.28	0.14	10.0	0.021	3.21	.0018	0.51	51		1.10	0.61	8.4	0.002	4.41	.0018	0
13	0.079	0.29	0.14	30.0	0.011	3.97	.0018	0.56	52	0.261	0.97	0.61	16.3	0.015	4.52	.0018	0
14	0.068	0.38	0.18	21.5	0.018	4 50	.0018	0.60	53		1.14	0.55	21.6	0.013	4.52	.0018	0
15	0.066	0.42	0.11	15.0	0.007	4.50	.0018	0.60		0.144	0.74	0.33	16.0	0.008	4,44	.0018	0
16	0.101	0.40	0.20	22.6	0.014	4.50	.0018	0.60	54 55	0.052	0.40	0.18	15.0	0.007	4.50	-0018	C
17	0.134	0.56	0.23	21.5	0.009	4.50	.0018	0.60	56	0.207	0.63	0.36	8.8	0.011	4.50	.0018	0
18	0.122	0.67	0.35	18.0	0.006	4.50	0018	0.60	57		0.83	0.43	23.8	0.008	4.50	.0018	(
19	0 273	0 82	0.49	6.7	0.005	4.50	0018	0.60	55	0.181	0.70	0.25	11.3	0.007	4.50	0018	(
20	0.254	0.79	0.36	12.0	0.007	4 50	0018	0.60			0.97	0.56	20.0	0.011	4.56	.0018	(
21	0.127	0.63	0.35	9.0	0.007	4.50	.0018	0.60	59 60	0.033	0.33	0.15	5.0	0.024	4.50	.0018	(
22	0.126	0.53	0.30	5.0	0.008	4.50	.0018	0.60	61	0.059	0.49	0.25	10.9	0.023	4.53	.0018	(
23	0.062	0.36	0.19	5.0	0.006	4.50	0018	0.60	62	0.188	0.54		26.3	0.003	4.50	.0018	0
24	0 095	0.45	0.30	42.4	0.005	4.50	.0018	0.60	63	0.037		0.21	7.0	0.028	4.73	.0018	C
25	0.082	0.42	0.25	15.0	0.007	4.50	.0018	0.60			0.28	0.15	15.0	0.017	4.58	.0018	0
26	0.092	0.65	0.34	24.0	0.006	4.50	.0018	0.60	64 65	0.250	0.75	0.35	10.0	0.005	4.50	.0018	0
27	0.198	0.54	0.33	26.6	0.007	4.50	.0018	0.60	66	0.072	0.48	0.24	11.6	0.013	4.68	8100.	0
28	0.068	0.53	0.19	54.5	0.030	4.69	0018	0.75	67	0.089	1	0.19	11.6	0.010	4.56	.0018	0
29	0.022	030	0.15	24.4	0.052	4.75	0018	0.80	63		0.48	0.20	15.0	0.002	4.50	.0018	0
30	0.050	0.60	0.36	20.0	0.052	4.87	.0007	0.89		0.380	0.93	0.41	17.3	0.008	4.50	0018	0
31	0.060	0.54	0.33	48.3	0.039	4.45	0018	0.65	69	0.230	0.85	0.32	12.0	0.005	4.50	.0018	0
32	0.041	0.45	0.17	24.6	0.034	4.55	.0018	0.72	70	0.302	1.21	0.59	9.5	0.004	4.50	.0018	0
33	0.053	0.54	0.25	-40.8	0.022	4.47	.0018	0.64	71	0.127	0.63	0.35	14.1	0.008	4.50	0018	0
34	0.0.4.4	0.48	0.21	15.0	0.013	4.53	.0018	0.63	72	0.257	1.16	0.51	19.5	0.004	4.50	0018	0
35	0.126	0.64	0.35	15.0	0.010	4.50	.0018	0.60	73	0.126	0.59	0.34	5.0	0.002	4.50	.0018	C
36	0.016	0.15	0.06	5.0	0.051	5.00	.0007	1.00	74	0.126	0.52	0.27	22.5	0.003	4.50	.0018	C
37	0.030	0.12	0.07	19.4	0.057	4.82	.0007	0.86	75	0.124	0.66	0.42	15.0	0.002	4.50	.0018	C
38	0.056	0.32	0.16	27.0	0.011	4.58	.0018	0.66	76	0.166	0.55	0.27	14.0	0.003	4.50	.0018	(
39	0.100	0.45	0.26	15.0	0.003	4.50	0018	0.60	77	0.115	0.61	0.23	19.5	0.003	4 50	.0018	
								0.00	75	0.130	0.63	0.39	13.5	0.004	4 50	.0018	

TABLE 3-3:

SUB-BASIN DATA FOR CUHP INPUT

ST. CHARLES MESA DRAINAGE BASINS, EXISTING CONDITIONS

SUB-BASIN #	AREA (sm)	LENGTH	LENGTH TO CENTROID (mi)	EXISTING % IMP.	SLOPE (ft/ft)	INITIAL INFIL RATE (in.)	DECAY RATE	FINAL INFIL RATE (in.)
								()
79	0.077	0.62	0.32	5.0	0.006	4.54	.0018	0.63
80	0.089	0.42	0.19	15.0	0.027	4.65	.0018	0.72
81	0.017	0.14	0.08	5.0	0.057	4.81	.0007	0.84
82	0.110	0.65	0.33	9.0	0.012	4.56	.0018	0.65
83	0.062	0.44	0.21	5.0	0.012	4.54	.0018	0.63
84	0.092	0.59	0.31	5.0	0.052	4.81	.0007	0.85
85	0.074	0.44	0.16	5.0	0.013	4.70	.0018	0.76
86	0.065	0.45	0.24	8.8	0.011	4.57	.0018	0.66
87	0.100	0.62	0.28	15.0	0.001	4.50	.0018	0.60
88	0.017	0.17	0.07	6.9	0.043	4.84	.0007	0.87
89	0.093	0.47	0.25	10.5	0.007	4.60	.0018	0.68
90	0.126	0.44	0.25	15.0	0.002	4.50	.0018	0.60
91	0.025	0.27	0.12	5.0	0.012	4.55	.0018	0.64
92	0.080	0.48	0.19	9.5	0.004	4.52	.0018	0.62
93	0.067	0.52	0.21	10.0	0.012	4.62	.0018	0.70
94	0.062	0.50	0.22	12.0	0.015	4.61	.0018	0.69
95	0.119	0.85	0.51	10.0	0.004	4.48	.0018	0.63
96	0.090	0.41	0.22	5.0	0.006	4.63	.0018	0.71
97	0.126	0.55	0.25	15.0	0.002	4.50	.0018	0.60
98	0.072	0.44	0.25	15.0	0 005	4.50	.0018	0.60
99	0.066	0.29	0.12	10.7	0.007	4.66	.0018	0.73
100	0.069	0.61	0.31	9.2	0.018	4.55	.0018	0.64
101	0.060	0.40	0.20	30.0	0 006	4.50	.0018	0.60
102	0.042	0.42	0.25	5.0	0.011	4.56	.0018	0.65
103	0.059	0.33	0.21	30.0	0.008	4.50	.0018	0.60
104	0.059	0.29	0.14	30.0	0.010	4.50	.0018	0.60
105	0.038	0.30	0.11	5.0	0.006	4.50	.0018	0.60
106	0.093	0,42	0.32	30.0	0.004	4.50	.0018	0.60
107	0.044	0.34	0.11	88.5	0.015	4.61	.0018	0.69
108	0.091	0.68	0.38	40.3	0.008	4.37	.0018	0.59
109	0.085	0.43	0.10	5.0	0.004	4.75	.0018	0.80
110	0.045	0.41	0.17	5.0	0.002	4.74	.0018	0.79
111	0.099	0.50	0 25	27.5	0.015	4.51	.0018	0.61
112	0.026	0.23	0.10	5.8	0.037	4.63	.0018	0.71
113	0.024	0.15	0.05	6.4	0 042	4.85	.0007	0.88
114	0.128	0.71	0.35	15.0	0 006	4.85	,0007	0.88

TABLE 3-4

SUB-BASIN DATA FOR CUHP INPUT

ST. CHARLES MESA DRAINAGE BASINS, FUTURE CONDITIONS

TABLE 3-4 SUB-BASIN DATA FOR CUHP INPUT ST. CHARLES MESA DRAINAGE BASINS, FUTURE CONDITIONS

SUB-BASIN #	AREA	LENGTH	LENGTH TO CENTROID	FUTURE % EMP.	SLOPE	INITIAL INFIL RATE	DECAY RATE	FINAL INFIL RATE
	(sm)	(mi)	(mi)		(ft/ft)	(in.)		(in.)
1	0.198	0.57	0.30	5.0	0.003	4.77	.0018	0.81
2	0.317	0.74	0.36	5.0	0.007	4.18	.0018	0.67
3	0.268	0.80	0.48	5.0	0.008	4.21	.0018	0.60
4	0.143	0.72	0.41	5.0	0.017	4.54	.0018	0.69
5	0.148	0.81	0.44	5.0	0.027	4.59	.0018	0.68
6	0.193	0.50	0.20	5.0	0.014	4.50	.0018	0.60
7	0.021	0.16	0.06	5.0	0.025	4.50	.0018	0.60
8	0.300	0.70	0.33	5.0	0.022	4.60	.0018	0.77
9	0.099	0.31	0.16	10.0	0.014	4.08	.0018	0.62
10	0.216	0.54	0.37	10.0	0.034	4.58	.0018	0.66
11	0.266	0.93	0.48	6.7	0.020	4.62	.0018	0.70
12	0.027	0.28	0.14	10.0	0.021	3.21	.0018	0.51
12	0.079	0.29	0.14	30.0	0.011	1 97	.0018	0.56
		0.29	0.14	23.2	0.011	4.50	.0018	0.60
14 15	0.068	0.33	0.13	15.0	0.018	4.50	.0018	0.60
			0.20	25.7		4.50	.0018	0.60
16	0.101	0.40		22.5	0.0		.0018	0.60
17	0.134	0.56	0.23		0.009	4.50		
18	0.122	0.67	0.35	18.0	0.006	4.50	.0018	0.60
19	0 273	0.82	0.49	15.0	0.005	4.50	.0018	0.60
20	0.254	0.79	0.36	14.0	0.007	4.50	.0018	0.60
21	0.127	0.63	0.35	18.8	0.007	4.50	.0018	0.60
22	0126	0.53	0.30	15.0	0.008	4.50	.0018	0.60
23	0.062	0.36	0.19	30.0	0.006	4.50	.0018	0.60
24	0.095	0.45	0.30	42.5	0.005	4.50	.0018	0.60
25	0.082	0.42	0.25	15.0	0.007	4.50	.0018	0.60
26	0.092	0.65	0.34	24.0	0.006	4.50	.0018	0.60
27	0.198	0.54	0.33	26.6	0.007	4.50	.0018	0.60
28	0.068	0.53	0.19	77.0	0.030	4.69	.0018	0.75
20	0.022	030	0.15	67.2	0.052	4.75	.0018	0.80
30	0.050	0.60	0.36	67.0	0.052	4.87	.0007	0.89
31	0.060	0.54	0.33	48.3	0.039	4.45	.0018	0.65
32	0.041	0.45	0.17	24.6	0.034	4.55	.0018	0.72
33	0.053	0 54	0.25	43.8	0.022	4.47	.0018	0.64
34	0.044	0.48	0.21	15.0	0.013	4.53	.0018	0.63
35	0.126	0.64	0.35	15.0	0.010	4.50	.0018	0.60
36	0.016	0.15	0.06	5.0	0.051	5.00	.0007	1.00
37	0.030	0.12	0.07	19.4	0.057	4.82	.0007	0.86
38	0.056	0.32	0.16	27.0	0.011	4.58	.0018	0.66
39	0.100	0.45	0.26	15.0	0.003	4.50	.0018	0.60
59	4,100	0.15	1.20	8.07 - 12	0.005	4.00		0.00

TABLE 3-4

SUB-BASIN DATA FOR CUHP INPUT

ST. CHARLES MESA DRAINAGE BASINS, FUTURE CONDITIONS

SUB-BASIN #	AREA	LENGTH	LENGTH TO CENTROID	FUTURE % IMP.	SLOPE	ENITIAL INFIL RATE	DECAY RATE	FINAL INFIL RATE
	(sm)	(mi)	(mi)		(ft/ft)	(in.)		(in.)
79	0.077	0.62	0.32	15.0	0.006	4.54	.0018	0.(1
80	0 089	0.42	0.19	21.0	0.027	4.65	.0018	0.63 0.72
81	0.017	0.14	0.08	15.0	0.057	4.81	.0007	0.72
82	0.110	0.65	0.33	15.0	0.012	4.56	.0018	0.65
83	0.062	0.44	0.21	15.0	0.012	4.54	.0018	0.63
84	0.092	0.59	0.31	15.0	0.052	4.81	.0007	0.85
85	0.074	0.44	0.16	15.0	0.013	4.70	.0018	0.76
86	0.065	0.45	0.24	17.3	0.011	4.57	.0018	0.66
87	0.100	0.62	0.28	15.0	0.001	4.50	.0018	0.60
88	0.017	0.17	0.07	6.9	0.043	4.84	.0007	0.87
89	0.093	0.47	0.25	15.0	0.007	4.60	.0018	0.68
90	0.126	0.44	0.25	15.0	0.002	4.50	.0018	0.60
91	0.025	0.27	0.12	15.0	0.012	4.55	.0018	0.64
92	0.080	0.48	0.19	15.0	0.004	4.52	.0018	0.62
93	0 067	0.52	0.21	15.0	0.012	4.62	.0018	0.70
94	0.062	0.50	0.22	13.5	0.015	4.61	.0018	0.69
95	0.119	0.85	0.51	15.0	0.004	4.48	.0018	0.63
96	0.090	0.41	0.22	5.0	0.006	4.63	.0018	0.71
97	0.126	0.55	0.25	15.0	0.002	4.50	.0018	0.60
98	0.072	0.44	0.25	15.0	0.005	4.50	.0018	0.60
99	0.066	0.29	0.12	10.7	0.007	4.66	.0018	0.73
100	0 069	0.61	0.31	15.5	0.018	4.55	.0018	0.64
101	0.060	0.40	0.20	30.0	0.006	4.50	.0018	0.60
102	0.042	0.42	0.25	7.0	0.011	4.56	.0018	0.65
103	0.059	0.33	0.21	30.0	0.008	4.50	.0018	0.60
104	0 059	0.29	0.14	30.0	0.010	4.50	.0018	0.60
105	0.038	0.30	0.11	15.0	0.006	4.50	.0018	0.60
106	0.093	0.42	0.32	J0.0	0.004	4.50	.0018	0.60
107	0.044	0.34	0.11	88.5	0.015	4.61	.0018	0.69
108	0.091	0.68	0.38	40.3	0.008	4.37	.0018	0.59
109	0.085	0.43	0.10	5.0	0.004	4.75	.0018	0.80
110	0.045	0.41	0.17	15.0	0.002	4.74	.0018	0.79
111	0.099	0.50	0.25	27.5	0.015	4.51	.0018	0.61
112	0.026	0.23	0.10	5.8	0.037	4.63	.0018	0.71
113	0.024	0.15	0.05	6.4	0.042	4.85	.0007	0.88
114	0.128	0.71	0.35	20.0	0.006	4.85	.0007	0.88

TABLE 3-5: SUB-BASIN DISCHARGES EXISTING DEVELOPMENT CONDITIONS

		DISCHARGE	FREQUENCY	(CFS)				DISCHARGE/	FREQUENCY	(CFS)			DISCHARGE	FREQUENCY	(CFS)
SUB-BASIN	2YR	5YR	IOYR	100YR	S	UB-BASIN	2YR	5YR	IOYR	100YR	SUB-BASIN	2YR	5YR	IOYR	100YR
#						Ħ					#				
				a and a second							· · · · · · ·				
1	4.	7.	20.	119.		40	62	91	121	295	79	6	22	54	180
2	7.	24.	50.	219.		41	43	51	91	248	80	21.	31.	69.	221.
3	5	21	40	166		42	31	48	81	232	81	0.	2.	2	20.
4	3.	9.	20	97		43	20.	34.	69.	214.	82	13	31	67	231
5	5	10	22	102		44	6.	13.	45.	166.	83	5.	17.	42.	142.
6	7.	26.	50.	205.		45	7.	24.	60.	198.	84	7.	10.	11.	128.
7	1.	6.	13.	45.		46	3.	11.	22.	97.	85	6.	11.	42.	165.
8	9.	18.	49.	253.		47	7.	33.	69.	216.	86	9	20	46	148
9	15	43	81	244		48	7.	28.	56.	216.	87	22	45	\$1	237
10	14.	31.	56.	222.		49	10.	27.	66.	293.	88	2.	2.	2.	21.
11	8.	18.	38.	178.		50	6.	18.	31.	125.	89	15	29	68	220
12	4	17	23	64		51	18	35	55	189	90	23	48	84	263
13	41	67	94	247		52	22.	38.	56.	176.	91	2.	6.	15.	53.
14	24.	39.	65.	186.		53	11.	23.	35.	116.	92	12.	29.	60.	189.
15	15	30	56	166		54	12	24	43	127	93	10	19	46	152
16	37	60	99	276		55	14	37	73	260	94	11.	20.	45	142.
17	36	64	103	293		56	27.	47.	67.	198	95	15	36	73	247
18	28	54	91	268		57	10.	25.	41.	148.	96	7	18	55	207
19	7.	20.	38	154		58	5.	8.	12.	40.	97	22	46	81	255
			52.	186.		59	2	10	22	73	98	17	33	62	183
20 21	14. 14	31. 38	75	258		60	16	37	75	232	99	11	17	44	1.48
22	S	30	68	252		61	26.	39.	61.	167.	100	10.	23	50	160.
	5	19	44	144		62	10	17	43	202	101	30.	44.	66.	176.
23				350		63	8.	14.	28.	86.	102	3	10	27	93
24	79.	105	136			64	11.	26.	45.	170.	102	30.			
25	20.	38.	71.	211.						164.	103	30.	43.	65.	173.
26	37	57	94	268		65 66	13. 9	19. 18	49. 39	121	104	30.	43. 11.	65 25	173. 85.
27	39	64	90	254						232.					
28	78	103.	119.	276.		67	21.	42.	78.		106	-49	69	106	288
29	8.	11.	17.	51.		68	63	62	96	315	107	103	137	157	264
30	16	21	24	81		69	12	27	44	159	108	71.	94.	127	326.
31	54	75	90	224		70	8	20	35	139	109	7.	9.	46.	189.
32	16.	21.	37.	105.		71	21	45	79	254	110	3.	5.	23.	96.
33	39.	52.	70.	176.		72	18	34	50	162	111	-15	66	104	280
34	10.	18.	35.	104.		73	7	30	65	244	112	2	5.	15	54.
35	23	48	84	263		74	35	62	97	275	113	2.	3.	3.	30,
36	0.	1.	2.	17.		75	23	47	83	258	114	23	31	36	162
37	9	12	13	.47		76	27	55	76	319					
38	25.	34,	56.	155.		77	30	55	91	261					
39	23	46	85	250		78	21	-15	80	259					

TABLE 3-6: SUB-BASIN DISCHARGES FUTURE DEVELOPMENT CONDITIONS

		DISCHARG	E/FREQUENCY	(CFS)			DISCHARG	FREQUENCY	(CFS)
SUB-BASIN #	2YR	5YR	10YR	100YR	SUB-BASIN #	2YR	5YR	10YR	100YR
	~. .								
1	4.	7.	20.	119.	40	62	91	121	295
2	7.	24.	50.	219.	41	43	58	91	248
3	5	21	40	166	42	55	73	103	270
4	3.	9.	20	97	43	44	59	92	255
5	3	10	22	102	44	6.	13.	45.	166.
6	7.	26.	50.	205.	45	7.	24.	60.	198.
7	1.	6.	13.	45.	46	6	14	26	100
8	9.	18.	49.	253.	47	21	46	800	235
9	15	43	81	224	48	7.	28.	56.	216.
10	14.	31.	56.	222.	49	10.	27.	66.	293.
11	8.	18.	38.	178.	50	42	68	92	251
12	4	17	23	64	51	18	35	55	189
13	41	67	94	247	52	22.	38.	56.	176.
14	26	41	67	189	53	15	29	43	132
15	15	30	56	166	5.4	12	24	43	127
16	43	65	104	283	55	33	60	98	287
17	37	66	104	294	56	32	54	76	216
18	28	54	91	268	57	20	38	58	181
19	16	33	53	181	58	5.	8.	12.	40.
20	17	35	56	195	59	7	15	27	77
21	31	57	96	281	60	16	37	75	232
22	31	61	113	340	61	30	43	65	173
23	31	45	69	183	62	10	17	43	202
24	79.	105	136	350	63	8.	14.	28.	86.
25	20.	38.	71.	211.	64	21	41	62	204
26	37	57	94	268	65	13.	19.	49.	164.
27	39	64	90	254	66	12	21	42	127
28	137	182	209	385	67	21.	42.	78	232.
29	31	42	-48	95	68	32	62	96	315
30	78	103	118	200	69	23	43	63	199
31	57	75	90	224	70	14	28	45	159
32	16.	21.	37.	105.	71	27	52	87	263
33	43	58	74	184	72	28	48	67	200
34	10.	18.	35.	104.	73	23	48	84	263
35	23	48	8-1	263	74	35	62	97	275
36	0.	1.	2.	17.	75	23	47	83	258
37	9	12	13	47	76	29	58	101	322
38	25.	34.	\$6.	155.	77	35	60	96	266
39	23	46	85	250	78	23	48	83	263

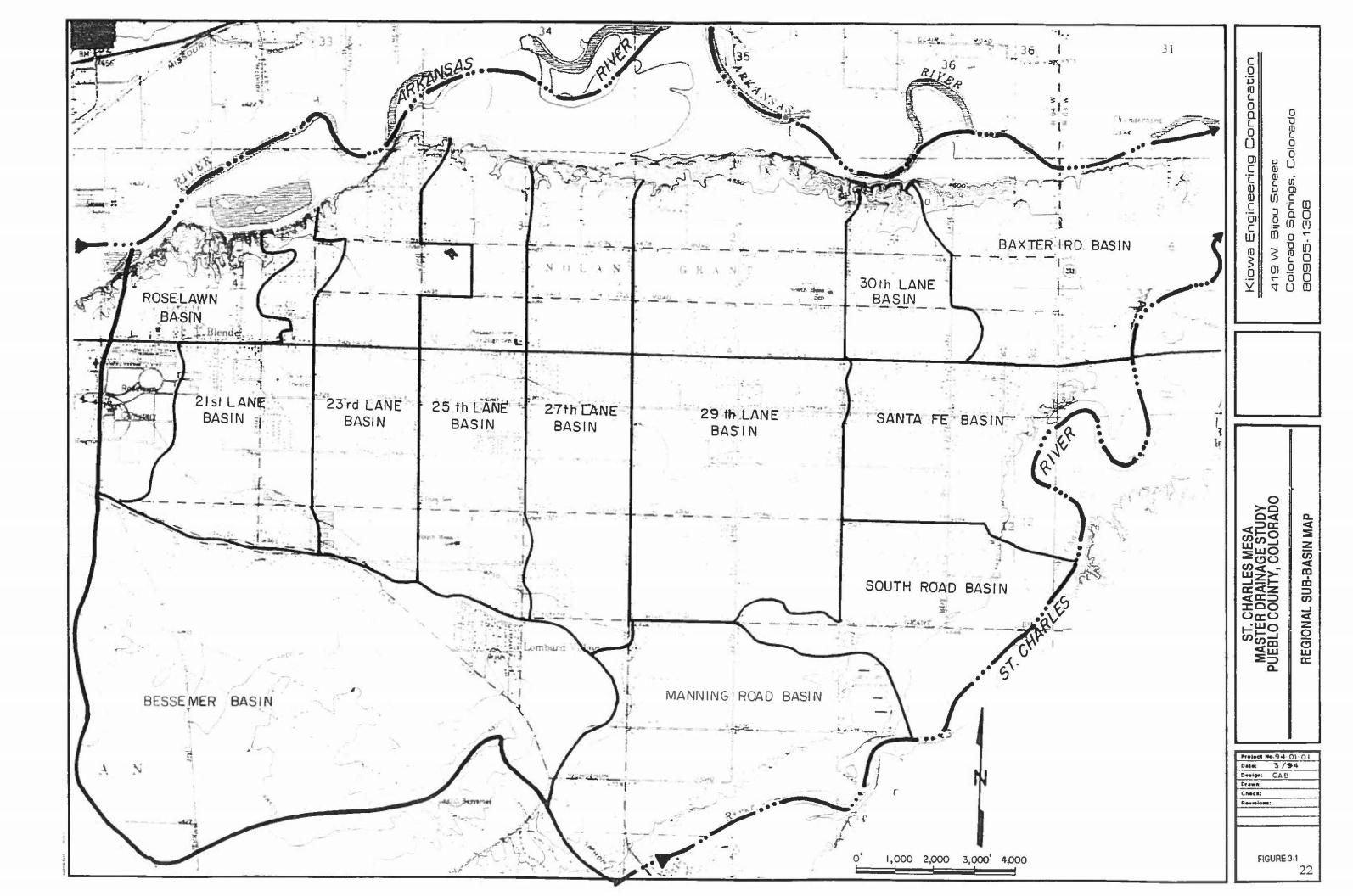
		DISCHARGE	FREQUENCY	(CFS)
SUB-BASIN #	2YR	5YR	10YR	100YR
79	18	34	65	195
80	31	41	78	239
81	4	5	5	24
82	23	41	78	242
83	14	27	51	153
84	22	29	34	146
85	17	23	53	177
86	18	29	55	165
\$7	22	45	81	237
88	2.	2.	2.	21.
89	22	36	76	235
90	23	48	84	263
91	5	10	19	57
92	19	36	68	204
93	16	24	52	162
94	13	21	47	146
95	24	46	84	259
96	7	18	58	207
97	22	46	81	255
98	17	33	62	183
99	11	17	44	148
100	17	30	57	173
101	30	-14	66	176
102	4	12	28	93
103	30.	43.	65.	173.
104	30.	43.	65.	173.
105	9	17	31	90
106	49	69	106	288
107	103	137	157	264
108	71.	94.	127.	326
109	7.	9.	46.	189
110	10	14	30	101
111	45	66	104	280
112	2.	5.	15.	54
113	2.	3.	3.	30.
114	32	43	49	176

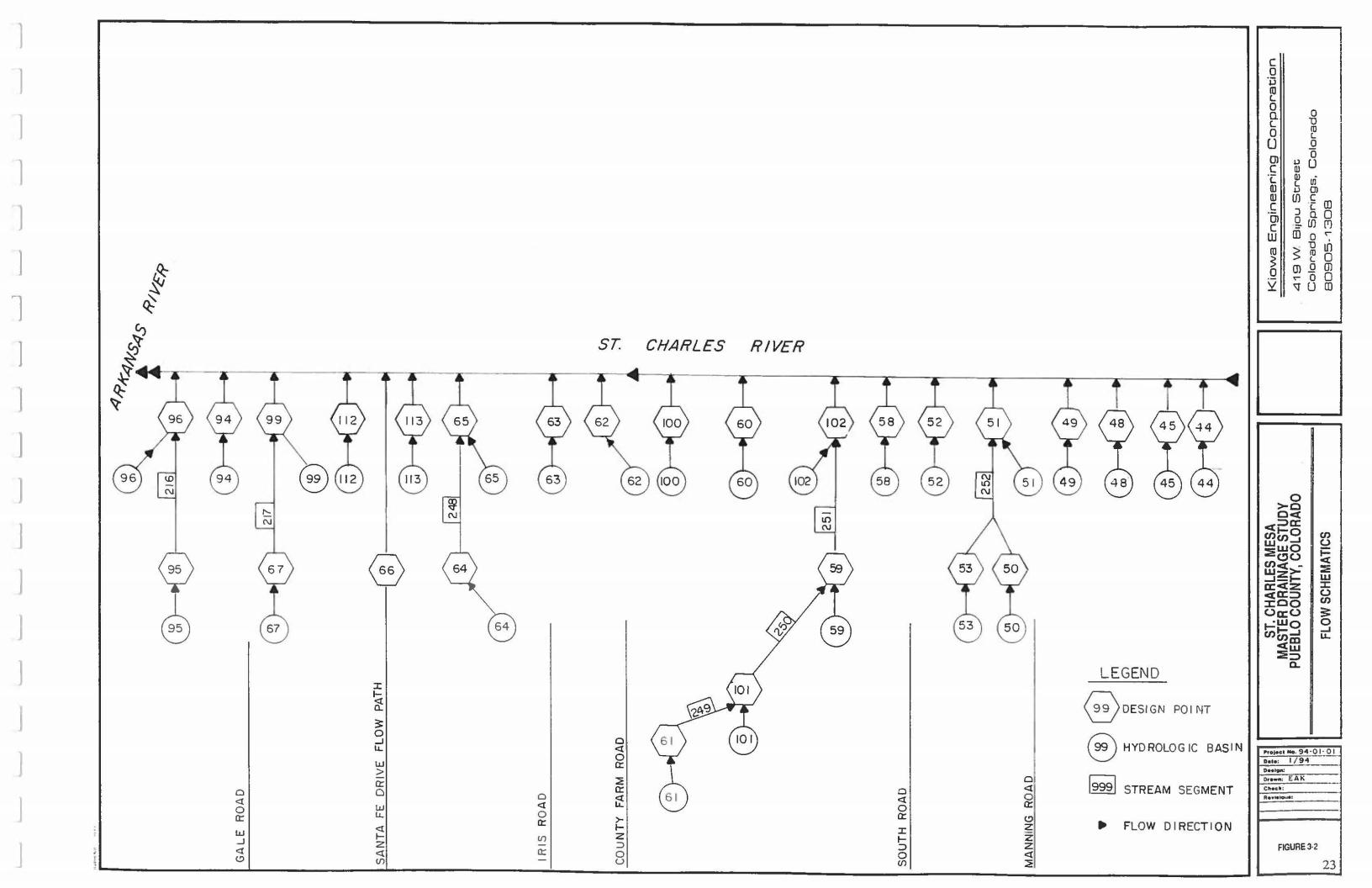
TABLE 3-7: DESIGN POINT DISCHARGES, EXISTING CONDITIONS ST. CHARLES MESA DRAINAGE BASINS

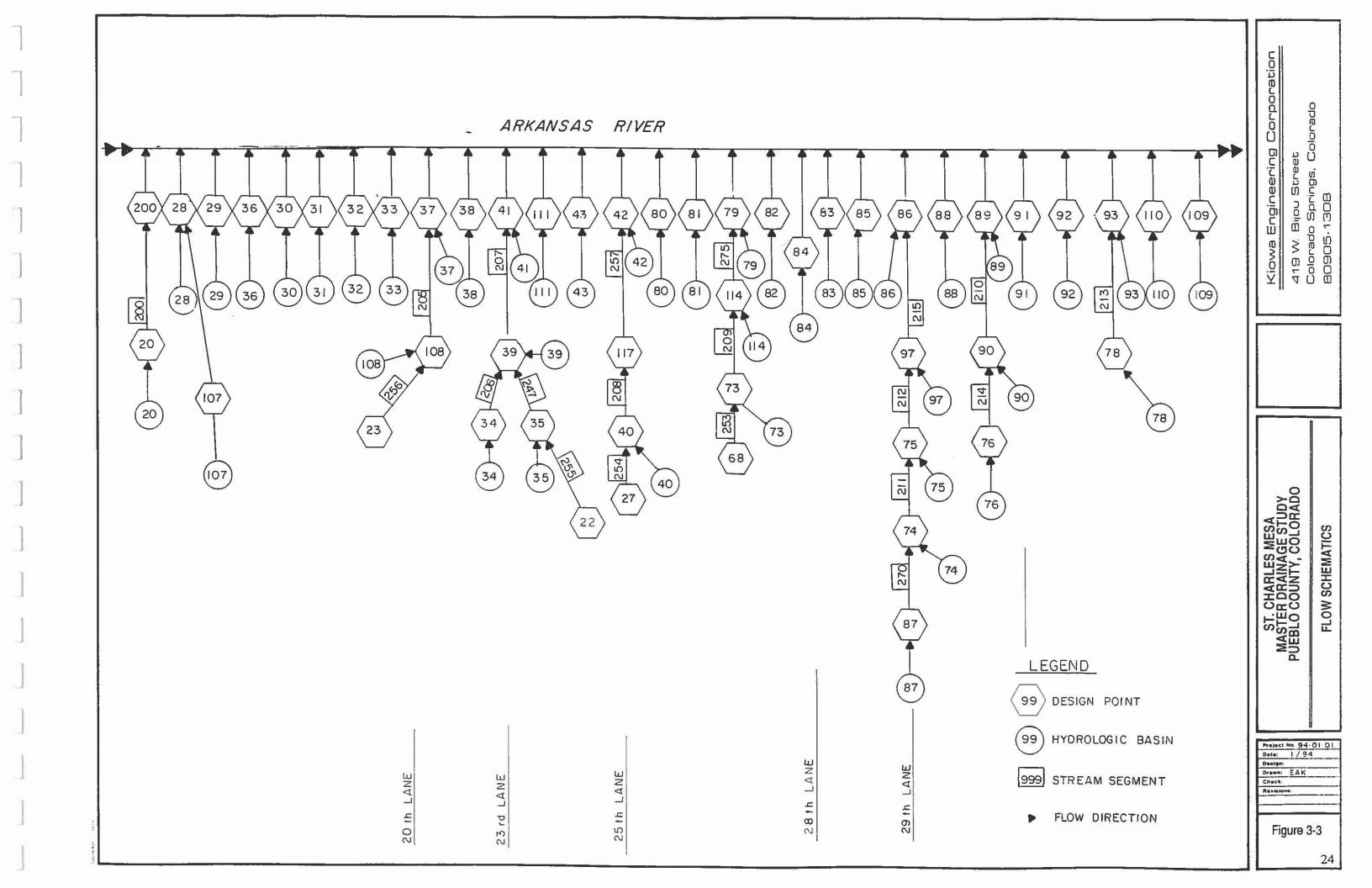
DESIGN POINT #	2YR	5YR	10YR	100YR	DESIGN POINT #	2YR	5YR	10YR	100YR	DESIGN POINT	2YR
1	4.	7.	20.	119.	4]	51.	90.	140.	311.	81	0,
2	7.	24.	50.	219.	42	32.	50.	84.	234.	82	13.
3	9.	25.	45.	176.	43	20.	34.	69.	214.	83	5.
4	3.	9.	20.	97.	44	6.	13.	45.	166.	84	7.
5	6	17.	39.	156.	45	7.	24.	60.	198.	85	6.
6	7.	26.	50.	205.	46	3.	11.	22.	97.	86	66.
7	L.	6.	13.	45.	47	7.	33.	69.	216.	87	22.
8	9.	18.	49.	253.	48	7.	28	56.	216.	88	2.
9	16.	46.	85.	249.	49	10.	27.	66.	293.	89	28.
10	14.	31.	56.	222.	50	6.	18.	31.	125.	90	37.
11	8.	18.	38.	178.	51	23.	41.	61,	196.	91	2,
12	20.	63.	108.	313.	52	22.	38.	56.	176.	92	12
13	47.	91.	141.	432.	53	11.	23.	35.	116.	93	19-
14	24.	39	65.	186.	54	16.	28.	48.	133.	94	11.
15	51.	73.	102.	223.	55	25.	64.	103.	353.	95	15.
16	37.	60.	99.	276.	56	27.	47.	67.	198.	96	11.
17	36.	64.	103.	293.	57	10.	25.	41.	148.	97	64.
18	40.	68.	107.	299.	58	5.	8.	12.	40.	98	144.
19	7.	20.	38.	154.	59	12	20.	33.	87.	99	21.
20	14.	31.	52.	186.	60	16.	37.	75.	232.	100	10.
21	49.	100.	160.	416.	61	26.	39.	61.	167.	101	30.
22	96.	175.	272.	558.	62	14.	22.	-48	208.	102	6-
23	82.	131.	172.	332	63	8.	14.	28	86.	103	30.
24	79.	106.	138.	352.	64	11.	26.	45.	170.	104	30.
25	20.	38.	71.	211.	65	13.	19.	49.	164.	105	3.
26	46.	75.	112.	286.	66	89.	158.	229.	483.	106	49.
27	118	179.	231.	502.	67	21.	42	78.	232.	107	103.
28	181.	240.	276.	539.	68	158	268.	354.	784.	108	71.
29	8.	11.	17.	51.	69	24.	41.	59.	184.	109	7.
30	16.	21.	24.	81.	70	179.	249.	311.	604.	110	3.
31	73	96.	113.	290.	71	-40.	66.	102.	287.	111	45.
32	16.	21.	37.	105.	72	167.	221.	270.	513.	112	2.
33	39	52.	70.	176.	73	7.	30.	65.	244.	113	2.
34	10	18.	35.	104.	7-1	45.	77.	120.	361.	114	30.
35	23	48.	84.	263.	75	49.	97.	146.	354.	115	178.
36	0.	1.	2.	17.	76	27.	55	98.	319.	116	155.
37	19.	25.	31.	91.	77	178.	240	299.	585.	117	7.
38	25	34.	56.	155.	78	21.	45.	80.	259.	118	5.
39	41.	85.	146.	498.	79	29.	65.	111.	436.	119	7.
40	62.	91.	121.	295.	80	21.	31.	69.	221.	120	12.

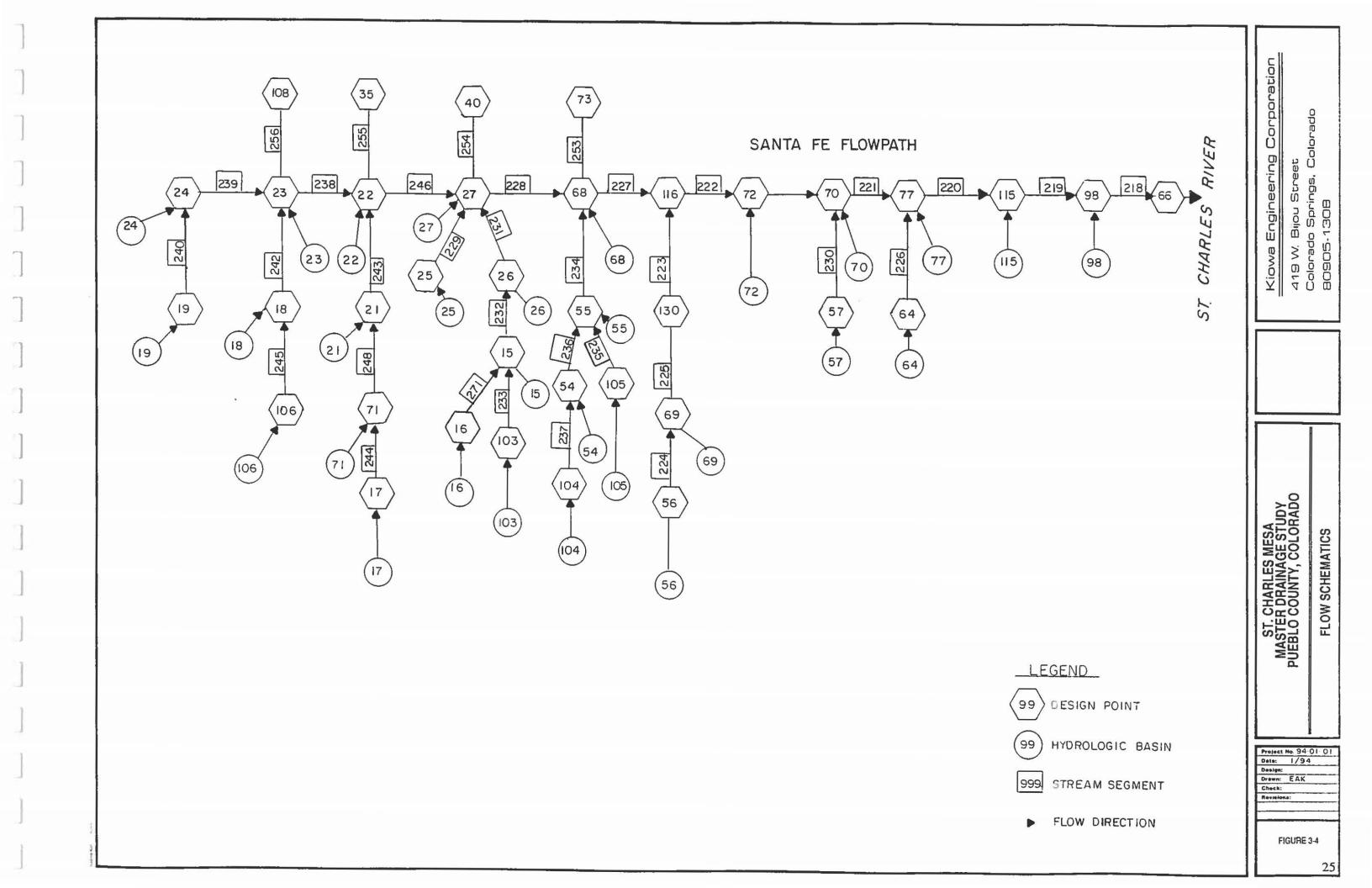
5YR	IOYR	100YR
2.	2.	20.
31.	67.	231.
17.	42.	142.
10.	11.	128.
11.	42.	165.
140.	226	695.
45.	81.	237.
2.	2.	21.
-16.	87.	245.
82.	138.	493.
6,	15.	53.
29.	60.	189.
44	80.	214.
20.	45.	142.
36.	73.	247.
23.	63.	215.
132	210.	595.
221.	284.	570.
42.	79.	300.
23.	50.	160.
4-1.	66.	176.
14.	31.	98.
43.	65.	173.
43.	65.	173.
11,	25.	85.
69.	106.	288.
137.	157.	264.
94.	127.	326.
9.	46.	189.
5.	23.	96.
66.	104.	280.
5	15.	54.
3.	3.	30.
52.	88.	353.
239.	297.	583.
215	270.	551.
8.	8.	12.
1.4.	32.	89.
27.	53.	236.
42.	86.	400.

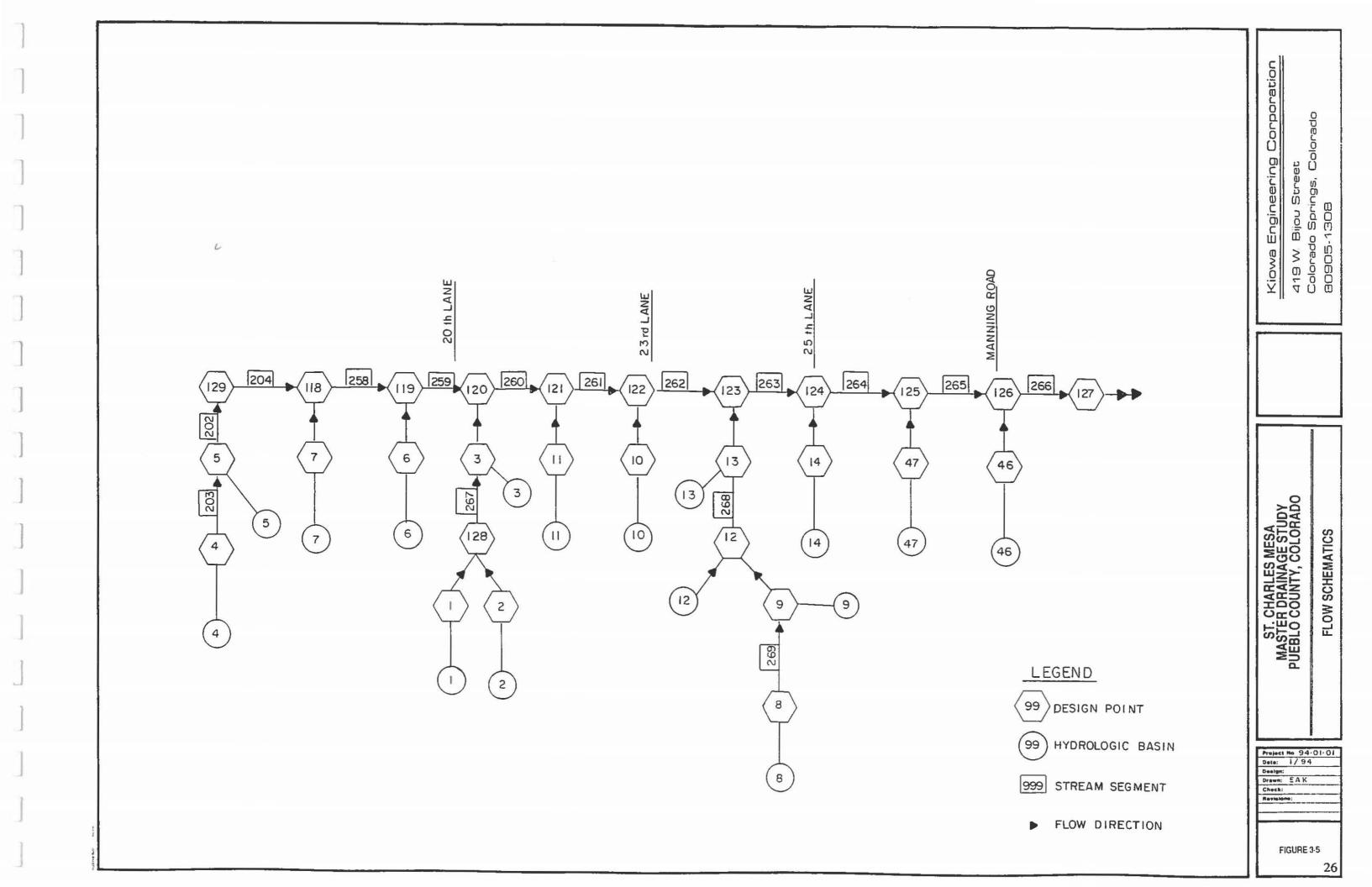
TABLE 3-7: DESIGN POINT DISCHARGES, EXISTING CONDITIONS ST. CHARLES MESA DRAINAGE BASINS


_	DESIGN POINT #	2YR	5YR	IOYR	100YR	DESIGN POINT #	2YR	5YR	10YR	100YR
	121	18.	55.	114.	546.	231	39.	61.	66.	92.
	122	21.	63.	133.	614.	232	19.	22.	25.	39.
	123	47.	93.	148.	582.	233	20.	22.	23.	32
	124	47.	102.	161.	573.	234	19.	50.	84.	186.
	125	29.	78.	148.	555.	235	2.	8.	17.	74
	126	30.	75.	155.	570.	236	11.	20.	22.	30.
	127	28.	74.	153.	559.	237	5.	5.	6.	10.
	128	11.	31.	70.	338.	238	49.	62.	76.	151.
	129	6.	16.	36.	89.	239	43.	52.	60.	104.
	130	23.	41.	51.	101.	240	4.	7.	11.	40.
	200	14.	31.	52.	186.	242	36.	63.	80.	135.
	202	6.	16.	36.	89.	2.43	49.	97.	161.	277.
	203	3.	8.	18.	65.	244	20.	24.	28.	51.
	204	5.	14.	32.	89.	245	14.	18.	22.	51.
	205	15.	22.	27.	71.	246	58.	84.	110.	280.
	206	4.	9.	16.	51.	247	20.	42	71.	213.
	207	27.	60.	67.	97.	248	38.	64.	97.	189.
	208	7.	8.	8.	12.	249	5.	5.	6.	8.
	209	7.	29.	62.	198.	250	10.	11,	12.	18.
	210	18.	23,	29.	69.	251	4.	5.	6.	8.
	211	33.	61.	81.	133.	252	6.	7.	8.	15.
	212	-47.	95.	142.	340.	257	6.	8.	8.	12
	213	14.	32.	53.	76.	258	4.	12.	29.	88.
	214	19.	43.	73.	272.	259	5.	19.	47.	225.
	215	63.	130.	200.	587.	260	12.	40.	85.	381.
	216	5.	6.	7.	14,	261	16.	50.	109.	491.
	217	13.	28,	50.	156.	262	20.	57.	124.	533.
	218	89.	158.	229.	483.	263	34.	79.	146.	563.
	219	144.	221.	284.	570.	264	29.	72.	147.	555.
	220	178.	239.	297.	583.	265	28.	71.	145.	539.
	221	167.	227.	281.	545.	266	28.	74	153.	559.
	222	150.	200.	247.	483	267	4.	5.	7.	22.
	223	9.	13.	18.	48.	268	13.	40.	71.	219.
	224	23.	41.	51.	101.	269	5.	6,	8.	23.
	225	15.	22.	30.	66.	270	12.	23.	36.	129.
	226	10.	15.	20.	47.	271	20.	24.	28.	50.
	227	150.	207.	258.	517.	275	26.	48.	77.	284
	228	109.	158.	192.	377.					
	229	3.	4.	4.	8.					
	230	5.	12.	16.	31.					


TABLE 3-8: DESIGN POINT DISCHARGES, FUTURE CONDITIONS ST. CHARLES MESA DRAINAGE BASINS


DESIGN		DISCHARGE	FREQUENCY ((CFS)	DESIGN		DISCHARGE	FREQUENCY (CFS)	DESIGN		DISCHARGE	FREQUENCY (CFS)
POINT	2YR	5YR	10YR	100YR	POINT #	2YR	5YR	10YR	100YR	POINT	2YR	5YR	10YR	100YR
τ	4.	7.	20.	119.	41	51.	90.	140.	311.	81	4.	5.	5.	24
2	7.	24.	50.	219.	42	55.	73.	106.	272.	82	23.	41.	78.	242.
3	9.	25.	45.	176.	43	44.	59.	92.	255.	83	14.	27.	51.	153.
4	3.	9.	20.	97.	44	6.	13.	45.	166.	84	22.	29.	34.	146.
5	6.	17.	39.	156.	45	7.	24.	60.	198.	85	17.	23.	53.	177.
6	7.	26.	50.	205.	46	6.	14.	26.	100.	86	70.	143.	230.	697.
7	1.	6.	13.	45.	47	21.	46.	80,	235.	87	22.	45.	81.	237.
S	9.	18.	49.	253.	-48	7.	28.	56.	216.	88	2.	2.	2.	21.
9	16.	46.	85.	249.	49	10.	27.	66.	293.	89	33.	53.	94.	256.
10	14.	31.	56.	222.	50	42.	68.	92.	251.	90	39.	84.	140.	497.
11	8.	18.	38.	178.	51	24.	41.	62.	197.	91	5.	10.	19.	57.
12	20.	63.	108.	313.	52	22.	38.	56.	176.	92	19.	36.	68.	204
13	47.	91.	141.	432.	53	15.	29.	43.	132.	93	25.	49.	85.	220
14	26.	41.	67.	190.	54	16.	28.	48.	133.	94	13.	21.	47.	146.
15	52.	74.	103.	224.	55	48.	86.	135.	389.	95	24.	46.	84	259
16	43.	65.	104.	283.	56	32.	54.	76.	216.	96	11.	23.	63	215.
17	37.	66.	104.	294.	57	20.	38.	58.	181.	97	64.	132.	210	595.
18	40.	68	107.	299.	58	5.	8.	12.	40.	98	179.	248	306.	584.
19	16.	33.	53.	181.	59	16.	25.	37.	91.	99	21.	42.	79.	300.
20	17.	35.	56.	195.	60	16.	37.	75.	232.	100	17.	30.	57.	173
21	72.	120.	183.	442.	61	30,	43.	65.	173.	101	30.	44,	66.	176.
22	130.	218.	312.	633.	62	15.	22.	48	208	102	S .	15	32.	98
23	102.	146.	197.	359	63	8.	14.	28.	86.	103	30.	43.	65.	173.
24	81.	107.	139.	353.	64	21.	41.	62	204	104	30.	43.	65.	173.
25	20.	38.	71.	211.	65	13.	19.	49.	164	105	9.	17.	31.	90.
26	46.	75.	112	286.	66	114.	187.	253.	502.	106	49.	69.	106.	288
27	128.	192.	245.	516.	67	21.	42.	78.	232	107	103.	137.	157.	264
28	240.	318.	366.	649.	68	184	293.	376.	796.	108	71.	94.	127.	326.
29	31.	42.	48.	95	69	34	55	78.	220.	109	7.	9.	46.	189.
30	78.	103.	118.	200.	70	208.	275.	333.	627.	110	10.	14.	30.	101.
31	134.	178.	208.	424.	71	47.	74.	110.	296	111	-45.	66.	104	280.
32	16.	21.	37.	105,	72	185.	238.	285.	519.	112	2.	5.	15.	54.
33	43.	58.	74,	183.	73	23.	48.	84	263	112	2.	3.	3	30.
34	10.	18.	35.	104.	74	45.	77.	120.	361.	114	54.	80.	112.	372.
35	23.	48.	84.	263.	75	49.	97.	146.	354.	115	206.	265.	319.	596.
36	0.	1.	2.	17,	76	49. 29.	58.			115	171.	205.	285	598. 568.
30	19	25	31.	91.				101.	322.					
	25.	34.	56.	155.	77	208.	266.	320.	599.	117	7.	8.	8.	12.
38			146.	498.	75	23	48.	83	263.	118	5.	14.	32.	89.
39	41.	85.	146.		79	59.	101	151.	453.	119	7.	27.	53.	236.
40	62.	91.	141-	295.	80	31.	-11.	78	239.	120	12.	42.	86.	400.


TABLE 3-8: DESIGN POINT DISCHARGES, FUTURE CONDITIONS ST. CHARLES MESA DRAINAGE BASINS


DESIGN		DISCHARGE/FREQUENCY (CFS)				DESIGN		DISCHARGE	FREQUENCY (CFS)	
POINT #	2YR	5YR	10YR	100YR	=	POINT ≇	2YR	5YR	IOYR	100 YF
121	18.	55.	114.	546.		231	39.	61.	66.	92.
122	21.	63.	133.	614.		232	19.	22.	25.	39.
123	47.	93	148.	582		233	20.	22.	23.	32.
124	49.	103.	163.	573.		234	37.	72.	108.	192.
125	33.	82.	151.	558.		235	6.	13.	23.	78.
126	33.	80.	160.	574.		236	11.	20.	22	30.
127	33.	79.	158.	563.		237	5.	5.	6.	10.
128	11.	31.	70.	338.		238	53.	68.	81.	158.
129	6	16.	36.	89.		239	43.	53.	61.	104.
130	27,	46.	53.	105.		2.40	6.	10.	14.	45.
200	17.	35.	57.	196.		2.12	36.	63.	80.	135.
202	6.	16.	36.	89.		243	69.	121.	186.	283.
203	3.	8.	18.	65.		244	21.	25.	28.	51.
204	5.	14.	32.	89.		245	14.	18.	22.	51.
205	15	22.	27.	71.		2.46	70.	97.	123.	292.
206	4	9.	16.	51.		247	20.	42.	71.	213.
207	27.	60.	67.	97.		2-48	44.	71.	104.	192
208	7.	8.	8.	12.		249	5.	5.	6.	8.
209	23.	46.	78.	204.		250	10.	11.	12.	18
210	18.	24.	30.	70.		251	4	5.	6.	8.
211	33.	61.	81.	133.		252	8,	9.	11.	17.
212	47.	95.	142.	340.		257	6.	8.	8.	12.
213	15.	34.	53.	76.		258	4.	12.	29.	88.
214	20.	46.	75.	275.		259	5.	19.	47.	225
215	63.	130.	200.	587.		260	12.	40.	85.	381
216	5.	6.	7.	14.		261	16.	50.	109.	491
217	13.	28.	50.	156.		262	20.	57.	124.	533
218	114.	187	253.	502.		263	34.	79.	146.	563
219	179.	248	306.	584.		264	30.	73.	1.47.	555
220	206.	265	319.	596.		265	30,	73.	148.	541
221	191.	249.	299.	555.		266	33.	79.	158.	563
222	164.	214.	260.	497.		267	4.	5.	7.	22
223	11.	15.	20,	50.		268	13.	-10.	71.	219
224	27.	-46	53.	105.		269	5.	6.	8.	23
225	16.	24.	32.	68.		270	12.	23,	36.	129
226	13.	18.	23.	52.		271	21.	25.	29.	51
227	165.	220.	270.	529.		275	48	76.	108.	29.1
228	121.	166.	201.	387.						
229	3.	4,	4.	8.						
230	9.	16.	18.	33.						

IV. HYDRAULIC ANALYSIS AND STORM DRAINAGE SYSTEM DESCRIPTION

Hydraulic Structure Inventory

A hydraulic structure inventory was conducted and the subsequent information was presented on 1-inch to 200-foot scale aerial mapping and entered in an index created to catalogue the information. Few major hydraulic structures exist on the St. Charles Mesa. The bulk of the inventory consists of driveway culverts installed to permit access across the existing storm/irrigation tailwater ditches. For the most part, culverts exist under major roadways although at some intersections only a concrete pan has been installed.

The inventory data has also been tabulated in a spreadsheet format. Size, type, condition and capacity is summarized in the database. The spreadsheets and mapping has been turned over to the Pueblo County Department of Public Works.

Review of the inventory data against the hydrology results show that many of the existing culvert and storm sewer facilities have less than a 5-year existing development condition flow capacity. Many of the existing roadside ditches are blocked by driveway culverts and debris. The are no natural drainageways on the Mesa. There are three detention basins on the Mesa. Two are onsite basins serving small subdivisions and they discharge to roadside ditches. Runoff entering these detention basins has to be pumped out because of the adjacent roadside ditch elevations. The third detention basin is more of a regional facility, and serves the Lakeside Estates subdivision. This detention basin outfalls to the roadside ditch system along LaSalle Street.

The Bessemer Ditch, though a dedicated irrigation structure owned and operated by the Bessemer Ditch company has adequate capacity to intercept and convey the tributary 100-year runoff out of the basin. At several locations, roadway and footbridges cross the ditch. These crossings restrict the flow capacity compared to the typical section of the Ditch.

Flood History

In the areas where a large number of reported drainage problems occur there is a high incidence of urban development upstream. Frequently, a local storm sewer system has been installed to handle a minor storm; but, the outfall is inadequate or is non-existent. Urban

development tends to channelize runoff and concentrate it at a single location. This along with increased imperviousness results in the type of flooding noted on the Mesa.

Another typical drainage problem on the Mesa stems from stormwater ditches overtopping due to restrictions (undersized driveway culverts, blockage in the ditches, etc.) whereby the runoff does not return to the roadside ditch. Instead, the runoff follows the existing low point which may be across a roadway or down a driveway into private property and away from the pubic road right-of-way. In some cases, this is an easily correctable problem by removing the restrictions or upsizing the culverts. However, in the case of an insufficient ditch section or a roadway sloping away from the ditch, major road cross-section modification would be required.

Much of the flooding of residences occurs because several subdivisions have been constructed along the historic low points and have finish floor elevations below the grade of the adjacent roadways and ditch banks. The residential structures are mostly at or near flow line elevations of the adjacent streets. Reconstruction of curb cuts and berming on the upstream side of structures to prevent shallow flooding is being used extensively in many areas of the Mesa.

In many cases of localized flooding, the once existing drainage ditches have been filled either intentionally or as a result of the development process. Reconstructing the minor swales or ditches could eliminate some localized flooding.

Another potential source of flooding may be the Bessemer Ditch. During the development of the basin hydrology, it was assumed that the Bessemer Ditch was only conveying dedicated ditch flows as it enters the St. Charles Mesa basin (near Aspen Street). This assumption allows for the routing of existing runoff into the ditch, and eventually through the basin without allowing flows from the Bessemer basins upstream to pass to the downstream areas of the Mesa. It has been reported that runoff from urban areas of south Pueblo can reach the St. Charles Mesa via the Bessemer Ditch. According to information provided by the Bessemer Ditch company, ditch overflows have been recorded in the past, mostly at existing roadway and pedestrian bridges which cross over the Ditch. Remedies for this situation will be discussed in later sections of this report.

Floodplains

Research into the existence of any documented floodplains on the St. Charles Mesa established that none are defined. The primary resource for this research was the "Flood Insurance Studies for Pueblo County, Colorado", prepared by the Federal Emergency Management Agency (FEMA), revised 1986. A portion of the basin studied does lie within the

1		
1		
3		
1		
1		
-		
1		
-1		
1		
1		
1		
1		
22		
1		
-1		
-		
1		
1		
1		
ĩ		
· · · · · · · · · · · · · · · · · · ·		
Ť		
4		
1		
1		

St. Charles River 100-year floodplain and the Arkansas River 100-year floodplain. There are no regulated floodplain area along the major flow paths which drain the Mesa.

Basis of Analysis and Design

In general, the City/County unadopted Drainage Criteria Manual, January 1987, was used as a technical guide to the evaluation, and design of existing and future drainage facilities. A consistent application of this criteria was used for comparing the feasible alternative drainageway plans, and during the selected preliminary designs. This criteria was supplemented as necessary by the Urban Storm Drainage Criteria manual (USDCM), prepared by the Urban Drainage and Flood Control District.

V. **DEVELOPMENT OF ALTERNATIVE PLANS**

Introduction

Alternative outfall plans have been examined that address the existing and future stormwater management needs of the basin. Quantitative and qualitative comparisons are presented in both narrative and tabular format, and a recommendation made as to which plan is most feasible to advance to preliminary design and eventual implementation.

General Considerations

During the alternative analysis it became evident that the basin had one general characteristic which influenced the existing drainageways form and function. The Mesa was originally settled as an irrigated agricultural area. Roads were developed between fields, along irrigation headwater, and tailwater ditches. Consistent with an agricultural use the slopes across the Mesa are less than a half percent. Development which has occurred has in most cases blocked the natural or historic outfall path. Roadways are both gravel and paved, neither of which have much capacity to convey runoff before overtopping the adjacent roadside ditches and curb and gutter. At roadway intersections, flow splits can occur whereby a low runoff event would pass through the existing roadside ditch and/or culverts, while larger volume flow events would be split, or diverted, to low lying areas or a different direction down the intersecting street away from the existing systems.

General planning goals followed during the alternative plan development phase were:

- Identify storm water facilities which will reduce existing flooding problems within (1)urbanized area(s);
- Provide stormwater management within developing areas of the basin in order to reduce (2)the detrimental effects of runoff from urbanized areas:
- Provide stormwater facilities which preserve and/or enhance the existing drainageways (3)and areas adjacent to the drainageways which provide an environmental resource in the area;
- Provide for separation of stormwater runoff from existing or abandoned irrigation (4)laterals;

- (5)
- (6) the water quality characteristics of the basin;
- Provide for a system which has cost feasibility; (7)
- (8) and,
- Provide for a system which will be adequate to serve future development. (9)

The preliminary City/County Drainage Criteria Manual was used to estimate rates of runoff and size facilities. Other planning goals were developed through a coordination process, utilizing common or mutual goals of the interested agencies identified prior to the initiation of the alternative development phase.

Preliminary Matrix of Alternatives

The alternative planning process began with the evaluation of general outfall planning alternatives. Alternatives which are generally available in the majority of urban drainage basins include:

- Do nothing, and/or floodplain regulation, (1)
- Channelization, (2)
- Piped systems, (3)
- Detention, on-site or off-site, (4)
- Combinations of the above. (5)

These concepts were evaluated for each major outfall path and regional sub-basin on the Mesa. Each of the above alternatives was evaluated for different recurrence intervals. At this time, there are no 100-year capacity facilities within the Mesa, except for the Bessemer Ditch which has the capacity to convey the 100-year discharge from areas upstream of the Ditch, assuming that the Ditch is only carrying the adjudicated flow at the time of a runoff event.

Outfall paths have been defined within the basin using the inventory information as well as the topographic mapping prepared for this study. In general, the regional sub-basins north of the Bessemer Ditch flow to the north. Santa Fe Drive acts as a diversion point for some of these regional outfall basins. Flow reaching Santa Fe Avenue is split for lower frequencies (i.e., greater than the 10-year flow). Flows in excess of the 5-year existing development condition

Identify facilities which will minimize future operation and maintenance costs;

Provide stormwater management facilities which will at least maintain and/or enhance

Provide for a system which is within the capability of being installed by County forces;

discharge are forced to the east along Santa Fe via the street section and a concrete roadside ditch along the south flowline of Santa Fe. A brief description of each flow path follows:

Roselawn/Aspen Street Outfall: This outfall path drains the Roselawn Cemetery area. At Santa Fe Avenue and Aspen Street, an existing storm drainage system conveys low flows across Santa Fe, into a roadside ditch system along Aspen Court. The Aspen Street ditch system is steep and eroded. This path outfalls to the Arkansas River via a natural drainage ravine. The Aspen Street basin north of Santa Fe is developed mostly into as industrial areas.

21st Lane Outfall: This outfall path serves mostly residential areas, and a small amount of commercial in the vicinity of Santa Fe Drive. The primary flow path north of Santa Fe is the street itself, along with roadside ditches. At many locations, private driveway culverts block the roadside ditches and in turn this has the potential of sending flow in the ditch into private property away from the public right-of-way. The 21st Street basin outfalls to a natural ravine and then into the Arkansas River floodplain. There are no storm sewer facilities along the 21st Lane outfall path.

23rd Lane Outfall: This outfall path drains mostly residential areas ranging from single-family to low density (large lot) residential areas. At Santa Fe, the runoff from upstream areas of this basin is conveyed to the Santa Fe right-of-way via roadside ditches. North of Santa Fe, a roadside ditch along the west side of 23rd conveys flow to the north and eventually to a natural ravine which outfalls to the Arkansas River floodplain. There are no storm sewer systems along this outfall path.

25th Lane Outfall: Similar to the 23rd Street basin, the 25th Street basin conveys flow from residential areas. At Santa Fe Drive, a cross culvert conveys low flows across the Santa Fe Drive right-of-way. From this point, the runoff follows roadside ditches which are blocked by driveway culverts. Flows in excess of the cross culvert will move east along Santa Fe. The 25th Lane outfall enters the Arkansas River floodplain via a natural ravine. There are areas within this basin which will be subject to future development into single-family subdivisions.

27th Lane Outfall: This basin drains both agricultural and medium density residential areas. Within the residential areas, curb and gutter and paved streets have been constructed. The runoff is conveyed to Santa Fe via roadside ditches. North of Santa Fe Drive roadside ditches convey flow along the 27th Lane right-of-way. The flow from the ditches outfall to a natural ravine and into the Arkansas River floodplain. There is a development potential within this basin in the future.

29th Lane Outfall: This basin drains primarily single-family and low density residential areas. There is a good potential for continued development within this basin. Along 29th Lane,

power poles are aligned within the existing ditch section which make widening this ditch to accommodate future flow impractical.

30th Lane Outfall: This basin drains single-family and low density residential areas. There is currently ongoing subdivision construction in this basin, and more could occur in the future. The existing system is mostly roadside ditches along paved and unpaved roadways.

Santa Fe Drive Outfall: This outfall drains low density residential and single-family residential areas lying east of 29th lane and south of Santa Fe Drive. The primary outfall route is a concrete channel along the south flowline of Santa Fe. This channel is blocked at several locations by driveway culverts. The concrete channel outfalls to the St. Charles River via a concrete and grasslined rundown just south of the Santa Fe Drive bridge over the St. Charles River.

Manning Road Outfall: This outfall drains mostly undeveloped agricultural areas and low density residential properties. The existing drainage system consists of roadside ditches and culverts under driveways and roadways. There is little additional development which is anticipated within this portion of the St. Charles Mesa.

South Road Outfall: This basin drains single-family and low density residential areas. There is the potential for future urbanization of this basin. South Road is paved and has curb and gutter. At intersections, the flowlines are discharged to roadside ditches which then flow to culverts under South Road. The basin outfalls to the St. Charles River via a shallow crosscountry swale.

Baxter Road Outfall: This basin drains single-family residential areas. Roadside ditches carry the flow along Baxter Road to its eventual outfall point at the Arkansas River. There is the potential for continued residential development within this basin.

Bessemer Ditch Outfall: The outfall for the Bessemer Ditch basin is the irrigation canal itself. The Ditch traverses the basin in generally an eastward direction. Near Nicholson Road, a siphon carries the irrigation water under the St. Charles River. The area draining to the ditch is mostly undeveloped agricultural and low density residential areas. Some additional single-family development is anticipated within the Lakeside Estates subdivision, which at this time is not fully built out. This subdivision drains to an existing detention basin. The detention basin outfalls to the roadside ditch system along La Salle Road, and eventually to the Ditch.

Drainage System Alternatives

The handling of stormwater can be accomplished by the use of pipes, channels, detention basins, bridges, culverts and various other physical improvements. The use of any one or a combination of the above improvements is dependent upon the level of flow, topography, rightof-way and the character of the areas adjacent to the outfall paths. A qualitative discussion of the feasibility of the general drainage alternatives is summarized below:

<u>Curb and Gutter:</u> In some cases use of a standard street section including 6" vertical curb will provide adequate capacity and channelization to prevent localized flooding during the 5-year storm event or significantly reduce required storm sewer sizes when used in combination.

<u>Storm Sewers:</u> Use of storm sewers is feasible within all proposed outfall systems as independent structures or in combination with curb and gutter or existing ditches. This conveyance alternative is somewhat limited by areas of extremely mild slopes (less than .3 percent), which causes the sizes of storm sewers to become very large, and in turn cost prohibitive. Utilities can also play a major role in determining the feasibility of storm sewer systems. In general, storm sewers greater than 60-inches in diameter do not have a high degree of feasibility due to their cost and their impact upon utility relocations and street repaying.

<u>Channels:</u> Channels, including roadside ditches are the predominant existing drainage facility on the Mesa along all flow paths. Enlarging the existing roadside ditch sections to convey future development condition runoff will usually require enlarging numerous private drives. In some areas of the Mesa, undeveloped land still exists to construct a lined channel, however right-of-way acquisition can become a major deciding factor when implementing a channel system on the Mesa. Riprap lined and grasslined ditch sections are most commonly used, however concrete lining does have feasibility wherever the need to keep the acquisition of right-of-way to a minimum is desirable.

Detention: The type of detention basin will be dependent upon the volume and rate of flow; however, right-of-way and the characteristics of the area adjacent to a proposed detention basin plays a large role in this alternative's feasibility. Water quality is an important concern in a light of the storm water discharge regulations, and a detention scheme has distinct advantages in this regard. Finally, operation and maintenance is a mandatory requirement of a storm water detention basin if the overall system is to function properly. Water quality is an important aspect of urban storm water management. If the basin develops a more urban density, this will be an important consideration. Detention facilities as well as increasing the efficiency of pollutant removal, may have a side benefit of enhancing the vegetative habitat. There are three onsite detention basins within the Mesa.

<u>Combined Systems</u>: Combining storm sewers with roadside ditches and improved street sections is usually a feasible alternative in basins where development has blocked the historic outfall paths. For the St. Charles Mesa, storm sewers with a five year capacity in combination with the existing roadside ditch or street capacity can bring the total capacity to at least a 10-year level, and in some cases a 100-year level. A storm sewer system can also be useful in handling nuisance flows resulting from lawn watering or everyday rainfalls which in the present situation

tend to pond and stagnate along the roadside ditch system or within low points adjacent to the roadways.

Alternative Analysis

The conceptual alternatives developed were each modeled hydrologically to assess the impact on peak flow rates. In general, the historic peak flow condition at Santa Fe Drive (U.S. Highway 50, Business Route), was a primary factor in the alternative planning. Various detention and diversion schemes were evaluated in order to optimize the flow to downstream drainageways. As a starting point the 5-year existing condition flows were used in the alternative evaluation. A 5-year system is a typical design standard for minor or local storm drainage system design within urban areas. The 5-year system is capable of conveying, without overtopping, over 90 percent of all runoff events.

Evaluation Parameters

Coordination meetings were held throughout the study to address overall goals and specific concerns of those agencies and individuals asked to participate in the study. A public input meeting was held and specific concerns of the residents were discussed. Complaint forms were collected. Additional complaints were received through the Pueblo County Engineers Office during the course of the study. Existing records for the years 1989 through 1991 were reviewed to determine recurring drainage problems on the Mesa. A list of all complaints was compiled for the County's use. Site visits were made to evaluate existing conditions relative to all complaints. Observations, history and solutions were presented by many of the residents during the site visits and incorporated into the alternate evaluation. Meetings with the Bessemer Irrigation Ditch Company, and St. Charles Mesa Water District, included discussions of historic overtopping and modifications. One result of the coordination efforts was the following list of factors which were considered during the alternate evaluation process.

- Flood Control
- Operation and Maintenance
- Water Quality
- Right-of-way

The major outfall systems for the regional basins on the St. Charles Mesa Basin were defined. Discharges along each at critical design points were identified for the 2-, 5-, 10-, and

- Erosion Control
- Constuctability
- Construction Cost
- Implementation

100-year storm events. Several design alternatives were analyzed hydraulically for each of the design storms. The hydrology data summarized in Section III was used to check the capacity the existing systems along the outfall paths. This capacity varies throughout the basin, but in general the existing outfall systems cannot handle the 5-year storm event.

Presented on Tables 5-1 through 5-4 are qualitative comparisons for each of the general alternatives discussed above. The general feasibility of a concept has been determined for each of the major outfall paths.

Design Parameters and Goals

The hydrology, hydraulic and alternative analyses discussed above have been combined in order to formulate a recommended alternative to each flow path. The recommendations have been based upon the existing system capacity, right-of-way constraints, the level of known flooding, cost and constructability issues.

As a result of the qualitative and quantitative comparisons presented above, design parameters and goals were identified to guide the selection of feasible outfall systems for each of the major flow paths on the St. Charles Mesa. The parameters and goals establish the minimum level of design for each outfall system. A discussion of the key design parameters follows:

1. Frequency: The level of service which each system must be able to achieve was established at the 5-year design frequency. In most case, the types of flooding currently being experienced is very localized. This is due to the relative flatness of the Mesa itself, and the existence of development or roadways which have blocked the natural drainage paths. In some cases residential development and associated roadways have blocked the major outfall path, however in some instances agricultural uses have also diverted runoff from natural drainage paths. The County roads are therefore the only conveyance right-of-way for stormwater runoff to reach the Arkansas or St. Charles rivers.

The five year frequency was considered appropriate for the design of outfall facilities because it will solve most of the existing local drainage problems and will not be as expensive to construct compared to the 10-year or 100-year design frequencies. In most cases, the existing roadside ditches along the major flow paths are of sufficient size to collect local runoff. Connecting the collector ditches into a 5-year capacity storm sewer or roadside channel outfall system will then provide for a safe conveyance of the 5-year flow through downstream basins on the Mesa without negatively impacting existing private property along the major flow paths with regard to flooding and additional right-of-way acquisition.

The baseline storm used in the evaluation of the conceptual design alternates was the 5year existing storm event. From an analysis of the hydraulic design data it was determined that use of the 100-year existing storm event produced an infrastructure which would not be feasible for the County to attempt to construct or to pay for. Even a 10-year existing system would require the construction of culverts in excess of 60-inches in diameter and greater along segments which are very flat in gradient.

2. Development Condition: Along with frequency, a key design parameter is whether or not runoff can be maintained to existing levels. For the design of the storm sewer systems on the Mesa, the existing development condition hydrology was determined to be appropriate. For the most part, the areas subject to future single-family development lie south of Santa Fe Drive. The runoff generated by such development can not be handled along the major flow paths north of Santa Fe Drive without causing additional localized flooding. Coupled within the high construction cost associated with handling developed runoff within existing downstream County road right-of-ways, it was determined that the existing condition runoff rates should be maintained. This can be achieved through the use of onsite detention to serve future development. The design of detention basins should be such that the developed 5-year and 100year frequencies are controlled to the levels presented in this report for the existing basin conditions.

3. Conveyance Systems: The type of conveyance system, (i.e., piped or channelized), will depend mostly upon the size of the County right-of-way which currently exists and the capacity of existing facilities. Along the flow paths north of Santa Fe Drive, the existing roadside ditches are of insufficient capacity to convey runoff generated south of Santa Fe to the Arkansas River. The reality is that most of the flow generated south of Santa Fe never reaches the outfall flow paths north of Santa Fe Drive since much of the runoff infiltrates or is stored in localized low points or ditches. In the future, the localized low points will become developed and unavailable for stormwater depression storage. The type of flow conveyance will also depend heavily on the extent of existing development along the major flow paths, and whether or not the existing roadside ditches can be modified without requiring substantial amounts of new right-of-way.

It has been determined that a system of outfall storm sewers is the most practical conveyance alternative for those major flow paths where existing development has already occurred. A piped system will require the least amount of new right-of-way acquisition and minimize disturbances to existing driveways and road intersections. This system will require that existing roadside ditches be connected to the storm sewer outfalls by means of intercepting inlets mostly sited at roadway intersections. The existing ditches serve to collect local flows generated within private property and from the County roadway right-of-way. Where existing structures lie below street grade, there is no option but to leave an existing the roadside ditch in service.

Along flow paths where a limited amount of development has occurred adjacent to the right-of-way, pipes or ditches have been proposed. This concept is primarily confined to the flow paths south of Santa Fe Drive. If possible, roadside ditches should be removed in favor of curbing, gutters and inlets to collect runoff generated from areas within or adjacent to the road right-of-way. For those areas served by gravel streets, paving and curb and guttering has been determined to be practical once development proceeds.

The goals to be achieved by the implementation of a storm sewer outfall system are:

-- Limiting the extent of local and nuisance flooding problems along the existing County right-of-ways for both the existing and future development condition

-- Providing future development with adequate stormwater outfall conveyance facilities through developed area of the Mesa

-- Limit the extent of right-of-way acquisition dedicated for stormwater conveyances

-- Provide existing and future development with local roadways which are not degraded by excessive amounts of storm drainage

-- Provide for systems which have feasibility with respect to funding and implementation

It is with these constraints and goals in mind that the facilities presented in Section 6 of this report have been designed.

Table 5-1: Evaluation of Conceptual Alternatives

Alternative Concept. Floodplain Regulation (do-nothing)

Parameter	Localized Flood Comol	1	Erosian Castrol	Operations and M	Mantenance	Comperati	ve Cost	Constructabili	ity	Right-of-Way		l Beleve	
Impact	Reduced Hazard No change	Reduced	increased	Reduced	increased effort	Most Costly	Least Costly	Increased Difficulty	Decreased	Acquisition	Acquisition	Relative Advantages/Disadvan Alternative Conce	
Flow Path								Dakaty	Datady	Increased	Decreased	Relative Advantages	Reisarve Dissovaria
Rominen	x	No change	Increase in erosion possible with commund development.	No reduction compared to existing conditions	Localized Booding causes widespread clean up		Least expensive if flood damages are ignored.		x	N/A	N/A	Least conty, minimal ROW acquisition required.	Recurring O & M, with no solution to long- term storm water transforment and flood duringer reduction.
21st Lane	x	No change	Increase in crossion possible with command development.	No reduction compared to existing conditions	Localized flooding canses widespread clean up		Least expensive if Bood damages are ignored.		x	N/A	N/A	Most flooding confined to existing street sections.	Same as Romiawo
23rd Lane	x	No change	Increase in crosson possible with continued development.	No reduction compared to existing conditions	Localized flooding causes widespread clean ap		Least expensive if flood damages are ignored.		x	N/A	N/A	Most flooding confined to existing street sections.	Same as Roselawn
25th Lane	x	No change	Increase in crosion possible with communed development.	No reduction compared to existing conditions	Localized flooding caning widespread clean up		Least expensive if flood damages are ignored.		x	N/A	N/A	Most flooding confined to existing street sections.	Same as Rossiawn
27th Lane	x	No change	Agricultural areas suscep- tible to crossion from de- veloped offsize flows.	No reduction compared to existing conditions	Localized flooding causes widespread clean up		Least expensive if flood damages are ignored.		x	N/A	N/A	Area is relatively undeveloped. Advantage is that flood prome areas can be defined and development restricted.	Plood prone zones would have to be defined and regulated.
29th Lane	No change. Relatively sp development at this time	rse No change	Agricultural areas suscep- tible to crossion from de- veloped affsite flows.	No reduction compared to existing conditions	Localized flooding cancer widespread clean up		Least expressive if flood damages are ignored.		x	N/A	N/A	Area is relatively mid-veloped. Advantage is that flood prone areas can be defined and development restricted.	Flood prope zones would have to be defined and regulated.
Santa Fe Drive	x	No change	Sedimentation of roadside ditches would be common because of mild grades.	No reduction compared to existing conditions	increased effort if cro- som is not controlled.		Least expensive if flood damages are ignored.		x	N/A	N/A		Flood prone zones would have to be defined and regulated.
30th Lane	x	No change	A gricultural areas suscep- tible to crosson from de- veloped offsize flows.	No reduction compared to existing conditions	Increased effort if cro- soin is not controlled.		Least expressive if flood damages are ignored.		x	N/A	N/A	Area is relatively undeveloped. Advantage is that flood prome areas can be defined and development restricted.	Flood prone zones would have to be defined and regulated.
South Read	x	No change	locrease in crosion possible with continued development.	No reduction compared to existing conditions	increased effort if ero- som is not controlled.		Least expensive if flood demages are ignored.	1	x	N/A	N/A	Area is relatively undeveloped. Advantage is that flood proto areas can be defined and development restricted.	Flood prose zones would have to be defined and regulated.
Mamming Road	x	No change	locrease in erosion possible with continued development.	No reduction compared to existing conditions	increased effort if ero- sion is not controlled.		Least expensive if flood demages are ignored.		x	N/A	N/A	Area is relatively undeveloped. Advantage is that flood proze areas can be defined and development restricted.	Fload prose zones would have to be defined and regularid.
Bessemer Dtch	Developed flows could ca uncontrolled ditch overtop		Increase in crosson possible with communed development.		Sedmentation of ditch would cause mereased effort		Least expansive if im- pacts to disch are ignored		x	N/A	N/A	Area is relarively undeveloped. Advantage is that flood prome areas can be defined and development restricted.	Uncontrolled ranoff into and out of ditch could cause increased flooding risks.
Barter Road	x	No change	increase in crossion possible with continued development.		increased effort if ero- som is not convolled.		Least expensive if flood damages are ignored.		x	N/A	N/A	Area is relatively undeveloped. Advantage is that flood prome areas can be defined and development restricted.	Flood prom zones would have to be defined and regulated.

Table 5-2: Evaluation of Conceptual Alternatives

Alternative Concept: Channelization

Parameter	Localund F	lood Canaral	Erc	mion Control	Operations and]	Mainenance	Comperativ	e Cost	Constructab	ni lity	Right-of-Way		Relative	T
Impaci	Reduced Hazard	No change	Reduced	Increased	Raduced effort	increased offert	Most Costly	Least Cordy	Increased Difficulty	Decreased Difficulty	Acquisition	Acquisition	Adventages/Dissdventages of Alternative Concept	
Flow Path									· · · · ·				Relative Advantages	Relative Disadvantages
Ronciawo	Local flooding smociated with 5- and 10-year fre- quencies eliminated.			Increase in crosson possible if bank limings are not manufained		Greater effort compared to piped systems.	If ROW included in this concept is a costly option.		Difficult construction for outfall channels at Monu.		Few arms outside of the street ROW's where adequate ROW exists.			Little ROW exists in this flow path to ai an outfall channel.
lst Lane	Local flooding associated with 5- and 10-year fre- quencies eliminated.			increase in erosion possible if hmk linngs are not maintained		Greater effort compared to piped systems.	If ROW included in this concept is a costly option.			Decreased difficulty cross-country conditions are the case.	Few sreas outside of the street ROW's where adoquate ROW extists.		Some existing roadside ditch sections are adequate for conveyance of ranoff.	Seme as Roselswa
	Local flooding associated with 5- and 10-year fre- quencies eliminated.			Increase in erosion possible if bank limmgs are not maintained		Greater effort compared to piped systems.	If ROW included in this concept is a costly option.		Existing subdivisions limit construction access to flow path.		Few steas outside of the street ROW's where sdequate ROW exists.			Main flow paths are adjacent to street. Cross-country rounds are not along low p
	Local flooding associated with 5- and 10-year fre- quencies eliminated.			Increase in crosion possible if bank linings are not maintained		Greater effort compared to piped systems.	If ROW included in this concept is a costly option.		Existing subdivisions limit construction access to flow path.		Few areas ounide of the street ROW's where adopted ROW exists.		Local flooding reduced significantly	ROW acquisition would negatively impa- existing subdivisions and residences alor 25th Lanc.
7th Lane	Local flooding associated with 5- and 10-year fre- quencies eliminated.			Increase in crosion possible if bank linings are not manuaimed		Greater effort compared to piped systems.	If ROW included in this concept this a contry option.	Where area is make- veloped, cost is lower then piped system.	Access to outfall point at Mesa difficult.		Few areas outside of the struct ROW's where adequate ROW exists, north of Senta Fe,	For some cross country routes , ROW could be through development process.	Open areas south of Santa Fe could be used to channelize full 100-year runoff.	ROW acquisition would negatively impa- cuising subdivisions and residences alon 27th Lane, north of Sama Fe.
9th Lane		Areas along ROW's are typically lower than the roadways.		Increase in crossion possible if bank limings are not maintained		Greater effort compared to piped systems.	If ROW included in this concept this a costly option.	Where area is unde- veloped, cast is lower then piped system.	Access to outfall poers at Mesa difficult.		Few areas outside of the struct ROW's where adoquate ROW exists, north of Santa Fe.	For some cross country rouns, ROW could be through development process,		North of Same Fe, ROW acquistion wou be coarty and reader this option metasib Low areas adjacent to the ROW will not be dramed by charmel sociars in this bas
Drive	Modest expansion of existing roadside ditches could achieve damage reduction for 10-year.		Use of existing concrete channel along Santa Fe would eliminate eration control needs.	Mild slope of existing con- crete channel requires yearly cleaning of trash.		Greater effort compared to piped systems.		If Santa Fe channel can be utilized, this option has favorable cost compare to piped systems.		Use of existing channel would limit used for excertion of existing street sections.			Improving reaching charged in com- bration with street capacity would limit flooding for most frequencies.	Centring of reachide ditch on yearly bas would be required. This work would have to be coordinated through CDoT.
Oth Lana	Local flooding associated with 5- and 10-year fre- quencies eliminated.			Increase in erosion possible if bank linings are not maintained		Greater effort compared to piped systems.	If ROW included in this concept this a cordy option.			Use of existing channel would limit meet for excavation of existing struct metions.	ROW required through existing residential areas.		Relatively sparse development could allow sitting of channel to the Mesa.	Existing readside ditch sections would n quire expension and spaciated ROW ac quiritian adjacent private residences.
ath Road		No change. No substantial damage carrently exists		Increase mension possible if bank linings are not manuaged		Greater effort compared to piped systems.	If ROW included in this concept is a costly option.	In cross-county areas, this option is less costly than piped option.		No change. All areas are actemible and away from residential areas.	Greater ROW require- ments in general.		Channel works well in cross country setus of this flow path. 100-year channel could be constructed.	Linte existing flood damages justify this option.
ursing ed		No change. No substantial damage currently exists		htrease in crosion possible if hank limings are not maintained		Genater effort compared in piped systems.		In cross-country areas, this option is less costly than piped option.		No chatige. All areas are accessible and away from residential areas.	Greater ROW require- ments in general com- pared to piped systems.		Channel works well in cross country areas of this flow path. 100-year channel could be constructed.	Little existing flood damages justify this option.
inan b		No change. No substantial damage entrently exists		increase in bank erosion possible with continued development.		Sedimentation of disch would cause increased effort		Most areas have adequate roam for channel without ROW acquasition.		No change. All areas are accessible and away from residential areas.	Shared ROW with Ditch company required		Uses existing duch and readside channel soctions to control runoff from moving both of Bessemer Disch.	Dual use of Ditch could potentially restr County's construction and manuemence of Ditch channel banks.
	Local flooding associated with 5- and 10-year fro- quancies eliminated.			Increase in crossion possible if bank limings are not maintained		Greater effort compared to paped systems.	If ROW included in this concept is a costly option.		Residences along Batter Road create access problems.		Few areas outside of the street ROW's where adequate ROW exists.			Existing readside ditch sections would re quite expansion and associated ROW ac- quisition adjacent private residences.

Table 5-3: Evaluation of Conceptual Alternatives

Alternative Concept: Piped Systems

Parameter	Localized F	lond Control	Ero	tion Costrai	Operations and M	lamenance	Comparative	e Cost	Constructa	bility	Right-of-Wa	,	1	
hapact Flow Path	Reduced Hazard	No change	Reduced	Increased	Reduced effort	bceased effect	Mos Cosly	Least Conty	Increased Difficulty	Decreased Difficulty	Acquisition	Acquisition Decreased	Relative Advantages/Disadvantages of Alternative Concept	
	1	1									1		Relative Advantages	Relative Disadvantages
Roselawn	Local flooding associated with 2- and 5-year fre- quencies eliminated.		Reduction compared in existing channel roadside ditch system	Outfalls to Mesa pends prometion against point discharges	Reduced effort for cleamp associated with localized flooding		Diamaters over 60° become cost prohibitive.	Reduced cost compared to channel assuming addi- tional ROW is not preded.	Difficult construction at outfall points	Avoids disturbances to private driveways and roadside ditches		Piped system can fa within existing road ROW	Fits within existing street sections. This option can solve most local flooding concerns.	10-year flow or greater runoff is not feasible from the cost standpoint. Utility conflicts a concern
21st Lane	Local Oording associated with 2- and 5-year fre- quencies eliminated.		Reduction compared to existing channel roadside ditch system	Outfails to Mesa needs protection against point - discharges	Reduced effort for clearnp associated with localized flooding	Street and inlet cleaning required	Diameters over 60" because cost prohibitive. Utility relocations may be costly.	Reduced cost compared to channel assuming addi- tional ROW is not pended.	Difficult construction at outfall points		1	Piped system can fit within existing road ROW	Fits within existing street sections. This option can solve most local flooding concerns.	Same as Roseiawn
23rd Lane	Local flowing associated with 2- and 5-year fre- quencies eliminated.		Reduction compared to existing channel roadside ditch system	Outfalls to Mesa needs prometion against point discharges	Reduced effort for cleanup associated with localized flooding	Street and inlet cleaning required	Diameters over 60° become cost prohibitive. Utility relocations may be costly.		Difficult construction at outfall points			Piped system can fa within existing road ROW	Fits within existing street sections. This option can solve most local flooding concerns.	Utility relocation and depth of pipe along mild gradients present cost raises costs. Sizes over 60-inch are not as constructuable by Coursy forces
25th Lane	Local flooding associated with 2- and 5-year fre- quencies eliminated.		Reduction compared to existing channel roadside ditch system	Outfalls to Mesa needs protection against point discharges	Reduced effort for cleanup associated with localized flooding	Street and inlet cleaning required	Diameters over 60" become cost prohibitive. Utility relocations may be castly.	in new subdivisions, cost of new systems could be bourne by developer.	Difficult construction access at outfall points			Piped system can fit within existing road ROW	Fits within existing street semions. This option can solve most local flooding concerns.	Milder slopes present cast and construction concerns. Paving and curb and guiter re- quired
77th Lane	Local flooding associated with 2- and 5-year fre-		Reduction compared to existing channel roadside ditch system	Outfalls to Mesa needs protection against point discharges	Reduced effort for clearnp associated with localized Booding	Street and inlet cleaning required	Diameters over 60° income cost prohibitive, Utility relocations may be costly.	In new subdivisions, cost of new systems could be bounce by developer.	Difficult construction access at outfall points			Piped system can fin within existing road ROW	Fits within existing street sections. This option can solve most local flooding concerns.	Milder slopes present cost and construction concerns. New ourb and guitter needed at accertal locations to inake system work.
29th Lane	5-year flooding reduced		Reduction compared to existing channel roadside ditch system	Outfalls to Mesa needs protection sgainst point discharges		Street and inlet cleaning required	Distinctors over 60° become cust prohibitive. Utility relocations may be costly.	in new subdivisions, cost of new systems could be bounce by developer.	Difficult construction access at outfall points			Piped system can fit within existing disch line	Fits within existing street sections. This option can solve most local flooding concerns.	Street paying and curb and guiner required at some locations to make piped system work.
Sania Fe Drive	5-year flooding reduced		Relatively unchanged compared to existing concrete clistinel system	C	Similar to existing channel system O & M.		Higher cost compared to modification of ex- isting channel system.		Construction would take place within CDoT right-of-way.			Piped system can fa within existing road ROW	Conveys maisance flows better than existing channel system.	Distance to outfall point at St. Charles River and mild alope renders this option unfeasible.
30th Lane	5-year flooding reduced			Outfall to Meta pends protection against point discharges		Street and inlet cleaning required	2	In new subdivisions, cars of new systems could be bouttoe by developer.	Difficult construction access at outfall points			Piped system can fit within existing road ROW	Existing sports and grades make this opposi- framble.	Street paying and ourb and gutter required at some locations to make piped system work.
South Road	5-year flooding reduced		Reduction compared to ex- isting readside ditch sys- tem to outfail to Raver.			Street and inlet cleaning required		In new subdivisions, cost of new systems could be bounne by developer.	Provident replacement required along recently completed readway project.			Piped system can fit within existing road ROW	Cantrols local flooding problems	Linde existing flood damages justify this option. Existing street section is adequate at most locations
Marring Road		No change. No substantial damage currently exists		Outfall to St. Charles River needs protection.	÷	Street and inlet cleaning required	More compared to upgrading of roadside ditch systems.			No change. All areas are accessible and away from residential areas.		Piped system can fit within caisting road ROW		New street and carb and gumer required to implement this option. Rural nature of this does not justify this alternative.
Bestemet Ducă		No change. No substantial damage carrently exists		Outfalls to ditch most stabilization		Struct and inlet doming required	Piped system to convey full 100-year flow from Bessemer basins un- feasible.			No change. All areas are accessible and away from residential areas.	Shared ROW with Ditch company required		Campis local flooding problems.	New struct and curb and gutter required to make this option work. Existing sub- division adequately served by reactaide
Baxur Road	Local flooding associated with 2- and 5-year fre- quencies eliminated.			Outfall at Mesa needs protection.		Street and inlet classing required	Higher cost compared to modification of ex- using channel system.		Construction would take place within CDoT right-of-way. Access		E.	Piped system can fit within existing road ROW	Connois local flooding problems.	Street paving and carb and gutter required at some locations to make piped system work.

Table 5-4: Evaluation of Conceptual Alternatives

Alternative Concept: Onsite or Regional Detention

Parameter	Localized Floo	d Control	Erosi	ion Connol	Operations and	Manuschange	Comparativ	t Cast	Construct	ability	Right-of-Way			
Impact	Reduced Hazard	No change	Reduced	Increased	Reduced	Increased	Mont	Laut	Increased	Decreased	Acquisition		Relative Advattages/Disadvartages of	
Flow Path	28.				effort	cflort	Costy	Costly	Difficulty	Difficulty	Increased	Acquistion Decreased	Alternative Concept	
						1		1					Relative Advantages	Relative Disadventages
Rosciawn		No area exarts to sim detention beam.			÷.	Determinen area and out- let structure ponds an- nual cleaning							New development should provide onsite de- tention sites as well as ROW access for Courty 0 & M activities.	Availability of suce for use as detendent facilities limited in this basm.
21 st Lana		No area exists to site detention basin.				Desention area and out- let structure needs an- mul cleaning				1			New development should provide onsite de- tention sites as well as ROW access for County O & M activities.	
23rd Lane		x	Detained flows to down- stream flow paths reduce the crossion potential			Determion area and out- let structure needs an- mul cleaning		In new subdivisions, cost of new systems could be bourne by developer.		Downstream facilities roduced therefore less construction difficulties	Area of detention basin will med to be acquired		New development should provide onsite do- tention sites as well as ROW access for County O & M activities.	Maintenance moreased over piped system
25th Later		x	Detained flows to down- stream flow paths reduce the crossion potential			Detention area and out- let structure nords an- mal cleaning		In term subdivisions, cost of new systems could be bounne by developer.		Downstream facilities reduced therefore less construction difficulties	Area of detention beam will need to be acquired		New development should provide onsite de- tention sizes as well as ROW access for County O & M accevities.	Maintenance increased over piped system Existing detention basin needs to be main-
27th Lans		x	Detained flows to down- stream flow paths reduce the crusice potential			Descrition area and out- let structure needs an- mal cleaning		In new subdivisions, cost of new systems could be bourne by developer.		Downstream facilities reduced therefore less construction difficulties	Area of detention basin will need to be acquired		New development should provide onsur de- tention sizes as well as ROW access for	tained by County. Maintenance increased over piped system Existing detention basis needs to be main-
29th Lane	f	x	Detained flows to down- stream flow paths reduce the crossion potential			Determion area and out- let structure mode an- mul cleaning		In new subdivisions, cost of new systems could be bounce by developer.		Downstream facilities reduced therefore less construction difficulties	Area of demotion beam will mod to be acquired		Courry O & M activities. New development should provide mante de- tention sizes as well as ROW access for Courry O & M activities.	tained by County. Maintenance increased over piped system
Santa Fe Avenue		x	Detained flows to down- stream flow paths reduce the crossion potential			Determion area and out- let structure needs ap- musi cleaning		Upstream detention will detrease required sizes of downstream facilities		Downstream facilities reduced therefore less construction difficulties	Area of detention basin will need to be acquired		New development should provide onsue de- tention sizes as well as ROW access for County O & M activities.	Mammune increased over piped system
30th Lane		Lintle additional develop- ment anticipated to wer- rent the use of onsine detention.						No impact		No mpact	N/A	N/A	Ommun desembles not frasible in this basin.	
South Read		Linte additional develop- ment anticipated to war- rant the use of onsue detention.								No impact	N/A	N/A	Onsize determions not frastible in this basin.	
Manning Road		Little additional develop- ment anticipated to war- rant the use of onsize devention.								No impact	N/A	N/A	Onsite detention pot finasible in this basin.	
Drtch	Determion in areas upstream of Ditch can reshoe total flow in Duch socion		Detained flows to down- stream flow paths reduce the crosson potential			Determion area and sup- let structure mode an- nual cleaning		Existing determine basin in Lakerside Ernates re- duces in flow to down- stream flow path and therefore cents.		No impact	County should obtain ROW and access to ex- isting determion hum in Lakewide Estates.		Onsur facility in this basin adequate to maintain flow to historic levels.	
Baxin: Rosd		Little additional develop- tizent anticipated to war- rant the use of onsize								No impact	N/A	N/A	Ousine desention not feasible in this basin.	

VI. SELECTED OUTFALL SYSTEMS PLAN

As a result of the alternative planning process, a selected outfall plan was determined for each of the major outfall paths within the St. Charles Mesa drainage basin. The outfall plan for each flow path has been presented on the preliminary design drawings contained at the rear of this report.

The selected outfall plan for the St. Charles Mesa Basin includes the following general features:

1. A combined system of storm sewers and roadside ditches capable of conveying the 5-year capacity flow.

2. Curb and gutter along existing streets where the street section is below the adjacent driveway.

3. Inlets of at least 5-year capacity to intercept street flows and flows within roadside ditches at key design points.

4. Upgrading outfalls to the Bessemer Ditch in order to intercept the 100-year existing condition discharge from areas tributary to the Ditch. A spill structure located at Salt Creek is recommended in order to clear the Ditch of runoff from south Pueblo prior to entering the St. Charles Mesa basin. A spill structure at the headgate of the Bessemer Ditch siphon is recommended in order to separate runoff from ditch irrigation flows. This spill structure would outfall to the St. Charles River.

<u>Hydrology</u>

Presented on Table 6-1 is the summary of peak discharges at all design points for the selected outfall plan condition. Sub-basin discharges are the same as shown on Table 3-5 presented in Section III of this report. Diversion of the 5-year flow across Santa Fe Avenue has been accounted for in the selected outfall plan hydrology model. A flow split has been modeled at 21st Lane, 23rd Lane, 25th Lane, 27th Lane and 29th Lane. The five-year flow has been routed north for these outfall paths, and the flow greater than the 5-year flow has been routed

along Santa Fe Avenue. The hydrology model has been modified from the baseline condition to reflect the proposed roadside channel and storm sewer facilities presented on the drawings. The selected outfall plan basin divides, design points and channel elements are presented on Exhibit 1, contained in the map pocket of this report. A sample SWMM input data file for the selected plan hydrology is presented in Appendix B.

Revegetation

The Urban Drainage & Flood Control District's publication "Guidelines for Development and Maintenance of Natural Vegetation" may be referred to as a guide for revegetation criteria for 100-year grasslined channels. Criteria for "bioengineered" vegetation should be in the form of performance specifications. That is, the vegetation should be designed to withstand specific velocity, depth and roughness criteria. All disturbed areas should be revegetated with plant species recommended in the above referenced guidelines. Areas in the bottoms of wetland channels should be planted with wetland-type vegetation. Detention basin areas should be planted with dryland species except for the permanent pool fringe area where wetland/riparian vegetation could be used. Existing trees and desirable vegetation should be saved wherever possible. Large cottonwoods and/or willow trees should be protected during construction activities.

Maintenance

All storm sewers and roadside channels will require periodic maintenance to ensure operation as designed. Routine mowing, debris pick up, and minor erosion area repair are the commonly needed maintenance measures. Signs and educational materials can help prevent some debris dumping into the roadside ditches. Use of native-type grasses helps reduce mowing requirements. For the purposes of limiting the maintenance of closed conduits, a minimum flow velocity of three feet per second for the one-quarter full flow condition should be used in the design.

Routine inspection of drop structures, riprapped areas, crossing structures, and detention facilities is required to detect deficiencies prior to flood events. All facilities must be designed to meet current Pueblo County drainage criteria as published in the preliminary Storm Drainage Criteria Manual.

Stormwater Detention

The use of onsite or regional detention must be implemented wherever future development is proposed. Due to the low feasibility of systems with capacity greater than the existing 5-year storm, future developments must maintain existing condition discharges for the 5- and 100-year frequencies. The existing detention basins in the Lakeside Estates subdivision should remain. An increase in peak discharges is seen for all frequencies in the developed condition. The main purpose of the detention facilities is to reduce the peak discharges from developed land to historic, or existing conditions. Secondary benefits for regional and onsite basins come in the form of enhanced water quality, and open space benefits. In some cases the detention basins may be incorporated into park or open space, whereby the detention basins can become multi-purpose in their function.

Cost Estimates

Costs to implement the preliminary design were estimated using the unit costs presented on Table 6-2. Utility costs have not been incorporated into the cost estimates. Land acquisition for channels or storm sewers have not been estimated. In general, most of the facilities proposed for the Mesa can be kept within existing easements or right-of-ways. In general, the land required for the storm sewer or channel improvements can be obtained for undeveloped areas via the development process. An allowance for engineering and contingency costs associated with the construction has been estimated using a factor of 20 percent of the total construction cost. A summary of the preliminary design costs are presented on Table 6-3 for each of the major outfall paths. Total estimated cost for the recommended plan is \$12,595,814. Costs for the facilities on each sheet of the drawings are presented on the pages facing the preliminary design drawings.

TABLE 6-1:

DESIGN POINT DISCHARGES, SELECTED OUTFALL PLAN ST. CHARLES MESA DRAINAGE BASINS

TABLE 6-1:

DESIGN POINT DISCHARGES, SELECTED OUTFALL PLAN ST. CHARLES MESA DRAINAGE BASINS

DESIGN					DESIGN					
POINT	2YR	5YR	10YR	100YR	POINT	2YR	5YR	10YR	100YR	
Ħ			5 76 F							
				And the second						
1	4	7	20	119	41	59	92	125	282	
2	7	24	50	219	42	122	195	231	397	
3	9	25	45	176		20				
	-				43		34	69	214	
4	3	9	20	97	44	6	13	45	166	
5	6	17	39	156	45	7	24	60	198	
6	1	26	50	205	46	3	11	22	97	
7	1	6	13	45	47	7	33	69	216	
8	9	18	49	253	48	7	28	56	216	
9	16	46	85	249	49	10	27	66	293	
10	14	31	56	222	50	6	18	31	125	
11	8	18	38	178	51	23	41	61	196	
12	20	63	108	313	52	22	38	56	176	
13	47	91	141	432	53	11	23	35	116	
14	24	39	65	186	54	16	28	48	133	
15	51	73	102	223	55	25	64	103	353	
16	37	60	99	276	56	27	47	67	198	
17	36	64	103	293	57	10	25	41	148	
18	40	68	107	299	58	5	8	12	40	
19	7	20	38	154	59	12	20	33	88	
20	14	31	52	186	60	16	37	75	232	
			160	416						
21	49 54	100 127	223	521	61	26	39	61	167	
22					62	10	17	43	202	
23	82	131	172	332	63	8	14	28	86	
24	79	106	138	352	64	11	26	45	170	
25	20	38	71	211	65	13	19	49	164	
26	46	75	112	286	66	9	18	39	121	
27	81	128	195	456	67	21	42	78	232	
28	181	240	276	539	68	51	112	212	704	
29	8	11	17	51	69	32	61	94	249	
30	16	21	24	81	70	59	100	171	589	
31	73	96	113	290	71	40	66	102	287	
32	16	21	37	105	72	47	71	123	467	
33	39	52	70	176	73	54	123	160	359	
34	10	18	35	104	74	45	77	120	361	
35	66	110	151	330	75	77	144	197	415	
36	0	1	2	17	76	27	55	98	319	
37	42	71	88	124	70	33	63	101		
									395	
38	25	34	56	155	78	21	45	80	259	
39	77	119	161	363	79	64	139	196	446	
-10	118	186	222	409	80	21	31	69	221	

TABLE 6-1:

DESIGN POINT DISCHARGES, SELECTED OUTFALL PLAN ST. CHARLES MESA DRAINAGE BASINS

TABLE 6-1: DESIGN POINT DISCHARGES, SELECTED OUTFALL PLAN ST. CHARLES MESA DRAINAGE BASINS

DESIGN					DESIGN				
POINT	2YR	5YR	10YR	100YR	POINT	2YR	5YR	10YR	100YR
#		and the second se			#				
81	0	2	2	20	121	18	55	114	546
82	13	31	67	231	122	21	63	133	614
83	5	17	42	142	123	47	93	148	582
84	7	10	11	128	124	47	102	161	573
85	6	11	42	165	125	29	78	148	555
86	82	145	192	312	126	30	75	155	570
87	22	45	81	237	127	28	74	153	559
88	2	2	2	21	128	11	31	70	338
89	28	46	87	245	129	6	16	36	89
90	37	82	138	493	130	32	44	54	145
91	2	6	15	53	200	14	31	52	186
92	12	29	60	189	202	6	16	36	89
93	19	44	80	214	203	3	8	18	65
94	11	20	45	142	204	5	14	32	89
95	15	36	73	247	205	42	69	88	120
96	11	23	63	215	206	4	9	16	51
97	82	142	179	383	207	34	39	46	77
98	40	81	127	386	208	113	180	. 208	270
99	21	42	79	300	209	54	122	159	238
100	10	23	50	160	210	18	23	29	69
101	37	63	94	248	211	33	61	81	133
102	6	14	31	98	212	77	111	139	264
103	30	43	65	173	213	14	32	53	76
104	30	43	65	173	214	19	43	73	272
105	3	11	25	85	215	82	136	163	213
106	49	69	106	288	216	5	6	7	14
107	103	137	157	264	217	13	28	50	156
108	110	167	214	406	218	38	76	122	381
109	7	9	-16	189	219	31	56	92	386
110	3	5	23	96	220	33	59	92	392
111	45	66	104	280	220	58	88	97	100
112	38	80	133	392	222	30	44	79	398
112	2	3	3	30	223	32	44	54	134
114	64	136	179	368	224	21	38	53	104
115	33	59	92	392	225	32	44	54	145
116	32	44	81	556	226	10	15	50	47
117	113	180	208	270	227	0	0	34	449
117	5	14	32	89	228	0	0	50	244
119	7	27	53	236	229	3	4	4	8
120	12	42	86	400	230	5	12	16	31
120	12	12		100	10 J 1				

TABLE 6-1:

7

-

DESIGN POINT DISCHARGES, SELECTED OUTFALL PLAN ST. CHARLES MESA DRAINAGE BASINS

DESIGN		61 7 7	10100	10010
POINT #	2YR	5YR	IOYR	100YR
231	39	61	66	92
232	19	22	25	39
233	20	22	23	32
234	19	50	84	186
235	2	8	17	74
236	11	20	22	30
237	5	5	6	10
238	0	0	24	85
239	43	52	60	104
240	4	7	11	40
242	36	63	80	135
243	49	97	161	277
244	20	24	28	51
245	14	18	22	51
246	0	0	39	177
247	64	69	72	97
248	38	64	97	189
249	14	24	37	86
250	11	13	15	25
251	5	6	7	10
252	6	7	8	15
253	51	106	136	161
254	75	121	128	128
255	52	68	71	92
256	76	92	92	97
257	111	176	183	184
258	4	12	29	88
259	5	19	47	225
260	12	-40	85	381
261	16	50	109	491
262	20	57	124	533
263	34	79	146	563
264	29	72	147	555
265	28	71	145	539
266	28	74	153	559
26 7	4	5	7	22
268	13	40	71	219
269	5	6	8	23
270	12	23	36	129
271	20	2.4	28	50

TABLE 6-1: DESIGN POINT DISCHARGES, SELECTED OUTFALL ST. CHARLES MESA DRAINAGE BASINS

DESIGN POINT #	2YR	5YR	IOYR	100YT
				and the
274	0	0	67	351
275	62	133	175	303

1.	DI	ANT
	F1	LAIN
-		

100YR

TABLE 6-2: Unit Construction Costs

			at the second	6
Item	Unit	Unit Material Cost Insta	Unit Ilation Cost	
CHANNEL AND HYDRAULIC STR				10' C
				Storm
Channel earthwork	CY	\$2	\$6	Storn
Filter material	Ton	\$13	\$12	Flap
Concrete flatwork	SF	\$4	\$4	Conc
Seeding and mulch	SF	\$0.05	\$0.10	
Riprap Type H	CY	\$26	\$6	ROAD
Riprap Type M	CY	\$20	\$6	
Erosion netting	SY	\$0.75	\$0.50	Pave
Ũ		-		Stree
CULVERTS RCP/CMP (1)				Vert
				Cros
15-inch	LF	\$18/15	\$6	Drive
18-inch	LF	\$20/17	\$6	
24-inch	LF	\$25/22	\$6	CHAN
22-inch X 36-inch arch	LF	\$42/37	\$10	
30-inch	LF	\$38/29	\$10	Gras
36-inch	LF	\$46/35	\$10	Con
27-inch X 44-inch arch	LF	\$70/55	\$12	
29-inch X 45-inch arch	LF	\$75/59	\$12	
42-inch	LF	\$60/42	\$15	
31-inch X 51-inch arch	LF	\$80/60	S18	
48-inch	LF	\$68/50	\$18	
40-inch X 65-inch arch	LF	\$75/55	\$18	
54-inch	LF	\$78/60	\$24	
45-inch X 73-inch arch	LF	\$90/65	\$24	
60-inch	LF	\$116/70	\$24	
JUNCTION STRUCTURES AND IN	VLETS			
5-foot manhole	EA	\$2,000	\$500	
Box base manhole	EA	\$4,000	\$1,000	
2' X 4' grated inlet	EA	\$1,500	\$500	
4' X 4' grated inlet	EA	\$1,800	\$600	
2' X 2' intercepting inlet	EA	\$1,200	\$500	
2' X 3' intercepting inlet	EA	\$1,400	\$500	
2.5' X 3' intercepting inlet	EA	\$1,500	\$500	
3' X 3' intercepting inlet	EA	\$1,500	\$500	
3' X 3.5' intercepting inlet	EA	\$1,800	\$700	
3' X 4' intercepting inlet	EA	\$2,000	\$700	
4' X 4' intercepting inlet	EA	\$2,500	\$800	
5' CO inlet	EA	\$2,500	\$800	

TABLE 6-2: Unit Construction Costs

Item

10' CO inlet
Storm sewer outfall structure
Storm sewer outlet structure
Flap Gate
Concrete headwall
ROADWAY IMPROVEMENTS
Pavement replacement
Street Paving
Vertical curb and gutter
Cross-pan
Driveway culvert headwalls
CHANNEL IMPROVEMENTS
Grasslined Channel
Concrete lined channel

	Unit	Unit
Unit	Material Cost	Installation Cost
EA	\$3,000	\$1,000
EA	\$25,000	\$10,000
EA	\$10,000	\$3,000
EA	\$700	S400
EA	\$2,000	S800
SY	S15	S5
SY	S4	S4
LF	S4	S2
SF	\$8	S2
EA	\$400	\$400
LF	S5	S15
LF	S25-S60	\$25-\$60

-

Table 6-3 Summary of Preliminary Design Costs

Basin and Flow Path	Total Material	Total Installation	Total Construction
Aspen Street/Roselawn	\$548,150	\$259,190	\$807,340
21st Lane	\$682,635	\$317,990	\$1,000,625
23rd Lane	\$1,144,845	\$490,750	\$1,635,595
25th Lane	\$642,989	\$369,450	\$1,012,439
27th Lane	\$856,430	\$442,410	\$1,298,840
29th Lane	\$1,416,687	\$770,271	\$2,186,958
30th Lane	\$284,110	\$156,550	\$440,660
Santa Fe Drive	\$270,928	\$268,212	\$539,140
Manning Road	\$30,880	\$47,090	\$77,970
Bessemer Ditch	\$391,130	\$432,540	\$823,670
South Road	\$41,750	\$60,850	\$102,600
Baxter Road	\$308,965	\$261,710	\$570,675
Total Estimated Construction Cost	\$6,619,499	\$3,877,013	\$10,496,512
Engineering and Contingency (20%)	\$1,323,900	\$775,403	\$2,099,302
Total Estimated Cost	\$7,943,399	\$4,652,416	\$12,595,814

VII. IMPLEMENTATION OF SELECTED OUTFALL SYSTEMS

The selected outfall system has been presented on the preliminary design plans contained within the rear of this report. The planning and the design of these improvements is a key first step in implementing a comprehensive program for stormwater management for the basin on the St. Charles Mesa. The implementation of this plan will depend upon various factors, however the planning goals associated with the development of this plan should be reviewed whenever a portion of the system is proposed for construction. The primary goals are as follows:

Reduce local flooding problems;

Provide outfall drainage facilities to serve future developments and property owners;

Provide outfall drainage facilities which will convey runoff in a safe and efficient manner through existing developed areas of the Mesa;

Minimize the acquisition of additional public right-of-way associated with stormwater conveyance; and,

Minimize the cost of stormwater conveyance facilities funded solely by Pueblo County.

The review of the above goals will be needed in order to best prioritize the improvements and to better direct the limited amount of capital improvement funds which will be available for stormwater facilities on the Mesa.

The construction and implementation of the selected outfall systems should be driven by the following parameters;

Existing facility inadequacy within a given outfall basin;

Level of flooding problems;

Development pressure within outfall basin;

Availability of funding; and,

Number of potential funding sources.

The selected outfall systems presented on the preliminary design plans should not be considered as final in their form. Each system should be reviewed in terms of system capacity, hydrologic response, right-of-way availability and routing options at the time the system(s) are proposed for final design and construction. Future development should be required to convey the five-year existing condition runoff to the dedicated outfall system by means of local streets and storm sewers. Alternatives to the systems presented in this plan should be considered by the County as long as the hydrologic response and impact upon downstream basins is not compromised or changed.

Implementation Tasks

The following steps are suggested prior to further design and construction of the systems identified in this plan.

1. Adoption of Drainage Criteria Manual: The City/County Drainage Criteria Manual referenced in this study should be reviewed, revised, and updated as necessary to allow for the eventual adoption by the County. This criteria is needed in order to help in the review and approval of future drainage plans to be prepared for future developments. The adoption of the drainage criteria will lead to more consistent design and construction of local stormwater systems. In revising the criteria, the requirements of individual master drainage plans such as the St. Charles Mesa Outfall Systems Planning Study should be incorporated into the criteria by reference.

2. Detention Basin Criteria Development: A criteria for the planning and design of onsite detention basins should be developed. There are several simplified methods which could be adopted. The criteria used by Douglas County contained in Appendix C of this report is an easy and effective way to design onsite detention basins and is based upon the soils types and historic drainage conditions in the area tributary to the detention basin.

3. Adoption of Erosion Control Criteria: The future level of maintenance for the selected outfall systems will be heavily dependent upon the amount of sediment available to be washed into the stormwater systems. Currently, there are extensive amounts of agricultural ground which lies uncultivated. These areas need to prevent the erosion of unprotected soils into the streets, roadside ditch sections, and storm sewer systems. New development can also cause significant land disturbance which can result in soil erosion. Erosion control criteria needs to be adopted by the County in an effort to limit the amount of soil loss from disturbed areas. Reducing the amount of soil erosion will directly impact the functioning of the stormwater outfall system(s).

4. Agreements with Ditch Company: The dependence upon the available flow capacity within the Bessemer Ditch affects each of the selected outfall systems. Discussions with the Bessemer Ditch Company should be considered by the County prior to extensive amounts of new development proceeding within the Bessemer Ditch Basin. An initial project which needs to be considered jointly is the stormwater separation structure for the Bessemer Ditch at Salt Creek. Construction of this structure will ensure that the Ditch will only be carrying irrigation flows into the St. Charles Mesa, thereby leaving sufficient capacity within the

ditch to convey the existing condition flows generated within the Bessemer Ditch basin through the St. Charles Mesa.

The development and eventual adoption of the above criteria form the initial steps for the development and implementation of any master drainage plan. The development of the above criteria will help to guide the implementation of the improvements in a consistent manner.

Prioritization

The prioritization of improvements has been accomplished by reviewing the planning goals for each flow path. In general, the outfall storm sewers have the highest priority since they are needed now to address local drainage problems and will be needed upon development of land on the Mesa. In some instances development pressure may change the priority of an outfall storm sewer. The priority of systems has been categorized into three levels; (1) Immediate need; (2) Needed upon development of land within the basin; and (3) as required by correlated projects. An example of a system in immediate need is the 23rd Street basin, north of Santa Fe Drive. Known flooding problems exist along this outfall, and extensive development in areas tributary to this system could not proceed since no safe outfall conveyance now exists. An example of a level 2 priority is the 25th Lane Outfall, south of Santa Fe Drive. The existing systems are currently adequate, but new development will need to connect to the system which will eventually outfall to the 25th Lane north of Santa Fe Drive. An example of a level three priority would be the construction of the Santa Fe Drive system. This system could be constructed at the time roadway improvements are constructed, thereby commingling roadway and drainage funds into a single more comprehensive project.

Presented on Table 7-1 is a Prioritization of the projects presented on the preliminary design plans. The priority of each system could be changed depending upon funding and development pressure. There is no specific ordering of each system within a level. Any level one system could be implemented, and its implementation will be dependent upon the amount of flooding which now exists and the potential for future development within the area tributary to the outfall system.

Table 7-1 Prioritization of Improvements

Description

Priority Level 1

Bessemer Ditch Stormwater Separation Structure Aspen Road System(s) 21st Lane System 23rd Lane System North of Santa Fe Drive 25th Lane System North of Santa Fe Drive 27th Lane System North of Santa Fe Drive 29th Lane System North of Santa Fe Drive

Priority Level 2

Bessemer Ditch Siphon Overflow Bessemer Basin Improvements 23rd Lane System South of Santa Fe Drive 25th Lane System South of Santa Fe Drive 27th Lane System South of Santa Fe Drive 29th Lane System South of Santa Fe Drive 30th Lane System

Priority Level 3

South Road Improvements Manning Road Improvements Baxter Road Improvements Santa Fe Drive Improvements

APPENDIX A

[.

SAMPLE SWMM INPUT DATA BASELINE HYDROLOGIC CONDITION

,

•

ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1

	DEVELOPED	BY	METCALF	+	EDDY,	INC.
--	-----------	----	---------	---	-------	------

UNIVERSITY OF FLORIDA

WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970)

UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973)

HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS

MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974)

BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985)

OTAPE OR DISK ASSIGNMENTS

	JIN(1) 2	JIN(2) 1	JIN(3) 0	JIN(4) 0	JIN(5) 0	JIN(6) 0	JIN(7) 0	JIN(8) 0	JIN(9) 0	JIN(10) 0	
	Jout(1) 1	JOUT (2) 2	JOUT (3) 0	JOUT (4) 0	JOUT(5) 0	JOUT(6) 0	JOUT(7) 0	JOUT(8) 0	JOUT (9) 0	JOUT(10) 0	
į		NSCRAT(1) 3		NSCRAT(2) 4		NSCRAT(3) 0		NSCRAT(4) 0		NSCRAT(5) 0	

WATERSHED PROGRAM CALLED

*** ENTRY MADE TO RUNOFF MODEL ***

ST CHARLES MESA 100-YEAR BASELINE EXISTING CONDITION COUNTY, PUEBLO, KIOWA ENGINEERING FILE:SCEX100.SIN

					WIDTH		INVERT	SIDE S	SLOPES	OVER	BANK/SURCHAR	IGE
GUTTER	GUTTER	NDP	NP		OR DIAM	LENGTH	SLOPE	HORIZ	TO VERT	MANNING	DEPTH	JK
NUMBER	CONNECTION				(FT)	(FT)	(FT/FT)	L	R	N	(FT)	
200	299	0	4	CHANNEL	24.0	900.	.0300	.0	.0	.020	1.00	0
				OVERFLOW	24.0	0.	.0010	10.0	10.0	.100	2.00	
202	129	0	4	CHANNEL	2.0	1500.	.0060	2.0	2.0	.040	2.00	0
				OVERFLOW	10.0	0.	.0010	40.0	40.0	.150	10.00	
203	5	0	4	CHANNEL	2.0	1000.	.0030	2.0	2.0	.040	2.00	0
				OVERFLOW	10.0	0.	.0010	40.0	40.0	.150	10.00	
204	118	0	4	CHANNEL	30.0	1300.	.0020	.5	.5	.040	3.00	0
				OVERFLOW	33.0	0.	.0010	20.0	20.0	.100	10.00	
205	37	0	4	CHANNEL	1.0	650.	.0050	2.0	2.0	.060	1.00	0
				OVERFLOW	5.0	0.	.0010	50.0	50.0	.060	10.00	
206	39	0	4	CHANNEL	2.0	3380.	.0100	2.0	2.0	.040	2.00	0
				OVERFLOW	5.0	0.	.0010	50.0	50.0	.150	10.00	
207	41	0	4	CHANNEL	3.0	2600.	.0100	1.0	1.0	.060	3.00	0
				OVERFLOW	9.0	. 0.	.0010	50.0	50.0	.100	10.00	
208	117	0	4	CHANNEL	1.0	5020.	.0080	2.0	2.0	.060	1.00	0
				OVERFLOW	5.0	0.	.0010	50.0	50.0	.150	10.00	
209	114	0	4	CHANNEL	3.0	1250.	.0100	1.0	1.0	.020	3.00	0
				OVERFLOW	12.0	0.	.0010	50.0	6.0	.100	10.00	
210	89	0	4	CHANNEL	2.0	1600.	.0050	1.0	1.0	.060	2.00	0
				OVERFLOW	6.0	ο.	.0010	50.0	50.0	.150	10.00	
211	75	0	4	CHANNEL	3.0	2650.	.0040	1.0	1.0	.030	3.00	0
				OVERFLOW	9.0	0.	.0010	50.0	50.0	.100	10.00	
212	97	0	-4	CHANNEL	3.0	1325.	.0100	1.0	1.0	.030	10.00	0
				OVERFLOW	9.0	0.	.0010	50.0	50.0	.030	10.00	
213	93	0	4	CHANNEL	2.0	2740.	.0120	2.0	2.0	.040	2.00	0
				OVERFLOW	5.0	0.	.0010	50.0	50.0	.150	10.00	
214	90	0	4	CHANNEL	10.0	1400.	.0040	10.0	10.0	.030	3.00	0
				OVERFLOW	10.0	0.	.0010	10.0	10.0	.100	10.00	
215	86	0	4	CHANNEL	5.0	1700.	.0080	1.0	1.0	.020	5.00	0

				OVERFLOW	13.0	0.	.0010	50,0	50.0	.060	10.00	
216	96	0	-4	CHANNEL	1.0	1200.	.0150	1.0	1.0	.060	1.00	0
				OVERFLOW	5.0	0.	.0010	50.0	50.0	.150	10.00	
217	99	0	4	CHANNEL	3.0	1520.	.0070	1.0	1.0	.060	5,00	0
				OVERFLOW	5.0	0.	.0010	50.0	50.0	.100	10,00	
218	66	0	4	CHANNEL	2.0	2000.	.0020	. 0	.0	.020	2.00	0
				OVERFLOW	11.0	0.	.0010	6.0	50.0	.150	10,00	
219	98	0	4	CHANNEL	3.0	1100.	.0020	1.0	1.0	.100	4.00	0
				OVERFLOW	11.0	0.	.0010	50.0	50.0	.100	10.00	
220	115	0	4	CHANNEL	3.0	600.	,0020	1.0	1.0	.020	4.00	0
220				OVERFLOW	11.0	0.	.0010	50.0	50.0	+100	10.00	
221	77	0	4	CHANNEL	3.0	3000.	.0020	1.0	1.0	.020	4.00	0
				OVERFLOW	11.0	0.	.0010	50.0	50.0	.100	10.00	
222	72	0	4	CHAINEL	3.0	2600.	.0020	1.0	1.0	.020	4.00	0
				OVERFLOW	11.0	0.	.0010	50.0	50.0	.100	10.00	
223	116	0	4	CHANNEL	1.0	1200.	.0100	1.0	1.0	.060	1.00	0
				OVERFLOW	3.0	0.	.0010	50.0	50.0	.100	10.00	
224	130	0	4	CHAINEL	1.0	3000.	.0080	10.0	10.0	.020	1.00	0
				OVERFLOW	20.0	0.	.0010	50.0	50.0	.150	10,00	
225	69	0	4	CHAINEL	1.0	700.	.0050	1.0	1.0	.020	1.00	0
				OVERFLOW	3.0	0.	.0010	50.0	50.0	.150	10.00	
226	77	0	4	CHANNEL	1.0	1250.	.0090	1.0	1.0	,020	1.00	0
				OVERFLOW	3.0	ο.	.0010	50.0	50.0	.150	10.00	
227	116	0	4	CHANNEL	3.0	2750.	.0020	1.0	1.0	.020	4.00	0
				OVERFLOW	5.0	0.	.0010	50.0	50.0	.100	10.00	
228	68	0	4	CHANNEL	3.0	2600.	.0020	1.0	1.0	.020	4.00	0
				OVERFLOW	5.0	0.	.0010	50.0	50.0	.100	10.00	
229	27	0	4	CHANNEL	1.0	3200.	.0070	1.0	1.0	.060	1.00	0
				OVERFLOW	3.0	0.	.0010	50.0	50.0	.100	10.00	
230	70	0	4	CHANNEL	1.0	5100.	.0070	10.0	10.0	.060	1.00	0
				OVERFLOW	20.0	0.	.0010	50.0	50.0	.150	10.00	
231	27	0	4	CHANNEL	3.0	1200.	.0100	1.0	1.0	.060	3,00	0
				OVERFLOW	9.0	0.	.0010	50.0	6.0	.150	10,00	
232	26	0	4	CHANNEL	2.0	2600.	.0060	1.0	1.0	.060	2.00	0
				OVERFLOW	6.0	0.	.0010	50.0	50.0	.150	10.00	
233	15	0	4	CHANNEL	2.0	1300.	.0090	1.0	1.0	.060	2.00	0
				OVERFLOW	6.0	0.	.0010	50.0	50.0	.150	10.00	
234	68	0	4	CHANNEL	3.0	3900.	.0070	1.0	1.0	.020	3.00	0
				OVERFLOW	12.0	0.	.0010	50.0	6.0	.060	10.00	
235	55	0	4	CHANNEL	3.0	2600.	.0120	1.0	1.0	.020	3.00	0

				OVERFLOW	12.0	0.	.0010	50.0	6.0	.100	10.00	
236	55	0	4	CHANNEL	2.0	1400.	.0100	1.0	1.0	.060	2.00	0
				OVERFLOW	6.0	0.	.0010	50.0	50.0	.150	10.00	
237	54	0	4	CHANNEL	1.0	1400.	.0100	1.0	1.0	.060	1.00	0
				OVERFLOW	3.0	0.	.0010	50.0	50.0	.150	10.00	
238	22	0	4	CHANNEL	2.0	2800.	.0030	1.0	1.0	.020	2.00	0
	-747			OVERFLOW	6.0	0.	.0010	6.0	50.0	.100	10.00	
239	23	0	4	CHANNEL	1.0	1300.	.0060	2.0	2.0	.020	1.50	0
				OVERFLOW	5.0	0.	,0010	6.0	50.0	.150	10.00	
240	24	0	4	CHANNEL	1.0	1250.	.0060	1.0	1.0	.060	1.00	0
				OVERFLOW	5.0	0.	.0010	6.0	50.0	.150	10.00	
242	23	0	4	CHANNEL	2.0	1400.	.0060	1.0	1.0	.030	3.00	0
				OVERFLOW	6.0	0.	.0010	50.0	6.0	.150	10.00	
243	22	0	4	CHANNEL	3.0	1800.	.0150	1.0	1.0	.020	3.00	0
				OVERFLOW	12.0	0.	.0010	50.0	6.0	.100	10.00	
244	71	0	4	CHANNEL	2.0	1350.	.0080	1.0	1.0	.060	2.00	0
				OVERFLOW	6.0	0.	.0010	50.0	6.0	.150	10.00	
245	18	0	4	CHANNEL	2.0	1300.	.0020	1.0	1.0	.060	2,00	0
				OVERFLOW	6.0	0.	.0010	50.0	50.0	.150	10.00	
246	27	0	4	CHANNEL	2.0	2600.	.0020	1.0	1.0	.020	2,00	0
				OVERFLOW	6.0	0.	.0010	6.0	50.0	.100	10.00	
247	39	0	4	CHANNEL	4.5	1350.	.0050	1.0	1.0	.030	4.00	0
				OVERFLOW	16.0	0.	.0010	50.0	50.0	.060	10.00	
248	21	0	4	CHANNEL	3.0	1320.	.0050	1.0	1.0	.020	3.00	0
				OVERFLOW	12.0	0.	.0010	50.0	6.0	.100	10.00	
249	62	0	4	CHANNEL	1.0	3000.	.0180	1.0	1.0	,060	1.00	0
				OVERFLOW	3.0	0.	.0010	50.0	50.0	.150	10.00	
250	59	0	4	CHANNEL	2.0	800.	.0220	1.0	1.0	.060	1.00	0
				OVERFLOW	3.0	0.	.0010	50.0	50.0	.150	10.00	
251	102	0	4	CHANNEL	1.0	2200.	.0100	1.0	1.0	.060	1.00	0
				OVERFLOW	3.0	0.	.0010	50.0	50.0	.150	10.00	
252	51	0	-1	CHANNEL	1.0	5100.	.0150	1.0	1.0	.050	1.00	0
				OVERFLOW	3.0	0.	.0010	50.0	50.0	.150	10.00	
253	73	0	4	CHANNEL	3.0	1000.	.0030	1.0	1.0	.020	3.00	0
				OVERFLOW	12.0	0.	.0010	50.0	6.0	.100	10.00	
254	40	0	4	CHAINEL	2.0	1350.	.0030	1.0	1.0	.060	3.00	0
				OVERFLOW	6.0	0.	.0010	50,0	50.0	.150	10.00	
255	35	0	4	CHANNEL	4.0	1325.	.0030	1.0	1.0	.030	3.00	0
				OVERFLOW	10.0	0.	.0010	50.0	50.0	.100	10.00	
256	108	Û	4	CHANNEL	4.0	2400.	.0100	1,0	1.0	.030	10,00	Ó

				OVERFLOW	10.0	0.	.0010	50.0 50.0	.100	10.00	
257	42	0	4	CHANNEL	3.0	1500.	.0100	1.0 1.0 50.0 50.0	.060	6.00 10.00	0
155	:::>	19	÷	OVERFLOW CHAICTEL	9.0 31.1	0. 1811.	.0010		1720	10:00	
				OVERFLOW	33.5	ð.	.0010	20.0 2.0	.100	10.00	
259	120	0	4	CHAINNEL	30.0	1500.	.0020	.5 .5	.040	3.00	0
0.00	101	0	4	OVERFLOW CHANNIEL	33.0 30.0	0. 1100.	.0010 .0020	20.0 2.0	.100	10,00 3,00	0
260	121	0	4	OVERFLOW	33.0	0.	.0010	20.0 2.0	.100	10.00	
261	122	0	4	CHANNIEL	30.0	1800.	.0020	.5 .5	.040	3.00	0
		0	4	OVERFLOW CHANNEL	33.0 30.0	0. 2600.	.0010	20.0 2.0	.100	10.00	0
262	123	0	4	OVERFLOW	33.0	0.	.0010	20.0 2.0	.100	10,00	
263	124	0	4	CHANNEL	30.0	1000.	.0020	.5 .5	.040	3.00	0
	105	0		OVERFLOW	33.0 30.0	0. 2100.	.0010	20.0 2.0 .5 .5	.100	10.00 3.00	0
264	125	0	4	CHANNEL OVERFLOW	33.0	0,	,0010	20.0 2.0	.100	10.00	
265	126	0	4	CHANNIEL	30.0	2400.	.0020	.5 .5	.040	3.00	0
265	127	0	4	OVERFLOW CHANNEL	33.0 30.0	0. 2200.	.0010	20.0 2.0	.100	10.00	0
266	121	0	4	OVERFLOW	33.0	0,	.0010	20.0 2.0	.100	10,00	
267	3	0	4	CHANNEL	1.0	4240.	.0080	2.0 2.0	.080	1.00	0
268	13	0	4	OVERFLOW CHANNEL	5.0	0. 2900.	.0010	50.0 50.0 2.0 2.0	.150	10.00 3.00	0
200	1.3	0	4	OVERFLOW	12.0	0.	.0010	50.0 6.0	+060	10.00	
269	9	0	4	CHANNEL	1.0	1610.	.0140	2.0 2.0	.080	1,00	0
270	74	0	4	OVERFLOW CHANNEL	5.0	0. 50.	.0010 .0100	50.0 50.0 1.0 1.0	.150	10.00	0
270	74	0	4	OVERFLOW	3.0	0.	.0010	50.0 50.0	.150	10,00	*
271	15	0	4	CHANNEL	1.0	1325.	.0050	2.0 2.0	.060	2.00	0
274	50	0	4	OVERFLOW CHANNEL	3.0 1.0	0. 5800.	.0010 .0080	50.0 50.0 1.0 1.0	.150	10.00	0
274	00	v	*1	OVERFLOW	3.0	0.	.0010	50.0 50.0	.150	10.00	
275	79	0	4	CHANNEL	3.0	1950.	.0080	2.0 2.0	.020	3.00	0
	100	0		OVERFLOW	12.0 1.0	0. . 1.	.0010 .1000	50.0 6.0 1.0 1.0	.100 .010	10.00	0
1 2	128 128	0			1.0	. 1. 1.	.1000	1.0 1.0	.010	1.00	0
3	120	0			1.0	1.	.1000	1.0 1.0	.010	1.00	0
4	203	0			1.0	1.	.1000	1.0 1.0	.010	1,00	0
5	202	0	3		1.0	1.	.1000	1.0 1.0	.010	1,00	0
			2		1.0	1.	.1000	1.0 1.0	,010	1.00	0
6 7	119 118	0 0			1.0	1.	.1000	1.0 1.0	.010	1.00	0
8	269	0			1.0	1.	.1000	1.0 1.0	.010	1.00	0
9 10	12 122	0			1.0 1.0	1.	.1000	1.0 1.0 1.0 1.0	.010	1.00	0
11	121	0			1.0	1.	.1000	1.0 1.0	.010	1.00	0
12	268	0			1.0	1.	.1000	1.0 1.0 1.0 1.0	.010	1.00 1.00	0
13 14	123 124	0			1.0	1.	.1000	1.0 1.0	.010	1.00	0
15	232	0			1.0	1.	.1000	1.0 1.0	.010	1.00	0
16	271	0			1.0 1.0	1.	.1000	1.0 1.0 1.0 1.0	.010	1.00	0
17 18	244 242	0			1.0	1.	.1000	1.0 1.0	.010	1.00	0
19	240	0			1.0	1.	.1000	1.0 1.0	.010	1.00	0
20 21	200 243	0			1.0	1.	.1000	1.0 1.0 1.0 1.0	.010	1.00	0
22	246	0			1.0	1.	.1000	1.0 1.0	.010	1.00	0
23	238	0			1.0	1.	.1000	1.0 1.0	.010	1.00	0 0
24 25	239 229	0			1.0	1. 1.	.1000 .1000	1.0 1.0 1.0 1.0	.010 .010	1.00	0
26	231	0	3		1.0	1.	.1000	1.0 1.0	.010	1.00	0
27	228	0			1.0	1.	.1000	1.0 1.0 1.0 1.0	.010	1.00	0
28 29	299 299	0	3		1.0	1.	.1000	1.0 1.0	.010	1.00	0
30	31	0	3		1.0	1.	.1000	1.0 1.0	.010	1.00	0
31	299	0			1.0	1. 1.	.1000 .1000	1.0 1.0 1.0 1.0	.010 .010	1.00	0
32 33	299 299	0			1.0	1.	.1000	1.0 1.0	.010	1.00	0
34	206	0	3		1.0	1.	.1000	1.0 1.0	+010	1.00	0
35	247	0			1.0 1.0	1.	.1000	1.0 1.0 1.0 1.0	.010	1.00	0
36 37	299 299	0 0			1.0	1.	.1000	1.0 1.0	.010	1.00	0
38	299	0	3		1.0	1.	.1000	1.0 1.0	.010	1.00	0
39	207	0			1.0	1.	.1000	1.0 1.0 1.0 1.0	.010 .010	1,00	0 0
40 41	208 299	0			1.0 1.0	1.	.1000	1.0 1.0	.010	1.00	0
42	299	0			1.0	1.	.1000	1.0 1.0	.010	1.00	0
43	299	0			1.0	1.	.1000	1.0 1.0	.010	1.00	0
44 45	299 299	0 0			1.0 1.0	1.	.1000	1.0 1.0 1.0 1.0	.010	1.00	0
40	293	U	د		1.0	÷.	. 1000	*** ***			

 $\sim 10^{-10}$

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 70 71 72 73 74 75 76 77 89 80 81 82 83 84 85	126 125 299 252 239 252 236 234 224 230 299 251 299 249 299 299 226 299 299 217 227 223 221 248 70 209 211 212 214 209 211 212 214 209 211 212 214 209 211 212 214 209 219 219 219 219 219 219 219 219 219 21		1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	0 1. 0	.1000 .1000	1.0 1.0	.010 .010 .010 .010 .010 .010 .010 .010	1.00 1.00	
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125	299 270 299 299 299 299 299 216 299 299 299 299 250 299 299 250 299 233 237 235 245 28 205 299 299 299 299 299 299 299 299 299 29		1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1000 .1000	1.0 1.0	.010 .010 .010 .010 .010 .010 .010 .010	1.00 1.00	

126	266	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
127	299	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
128	267	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
129	204	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
130	225	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
OTOTAL NUR	BER OF GUTTE	RS/PIPES, 2	02								

 (\mathcal{A}_{i})

1

APPENDIX B

SAMPLE SWMM INPUT DATA SELECTED OUTFALL PLAN HYDROLOGIC CONDITION

.....

.

ST CHARLES MESA 100-YEAR SELECTED CONDITION COUNTY, PUEBLO, KIOWA ENGINEERING FILE: SC100SEL.SIN

COUNTY, PUEBLO, KIOWA ENGINEERING FILE:SC100SEL.SIN

ONUMBER OF TIME STEPS 60

OINTEGRATION TIME INTERVAL (MINUTES), 5.00

25.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH 1

ST CHARLES MESA 100-YEAR SELECTED CONDITION

*** ENTRY MADE TO RUNOFF MODEL ***

WATERSHED PROGRAM CALLED

	2	1	0	0	0	0	0	0	0	0	
	JOUT(1) 1	JOUT(2) 2	JOUT(3) 0	JOUT(4) 0	JOUT(5) 0	JOUT(6) 0	JOUT(7) 0	JOUT(8) 0	JOUT(9) 0	JOUT(10) 0	
1		NSCRAT(1) J		NSCRAT(2) 4		NSCRAT(3) 0		NSCRAT(4) 0		NSCRAT(5) 0	

JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10)

OTAPE OR DISK ASSIGNMENTS

HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974)

EOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985)

UNIVERSITY OF FLORIDA (JUNE 1973)

DEVELOPED BY

UNIVERSITY OF FLORIDA

ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1

WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970)

METCALF + EDDY, INC.

UPDATED BY

ST CHARLES MESA 100-YEAR SELECTED CONDITION

COUNTY, PUEBLO, KIOWA ENGINEERING FILE: SC100SEL.SIN

					WIDTH		INVERT	SIDE S	LOPES	OVER	BANK/SURCHA	RGE
GUTTER	GUTTER	NDP	NP		OR DIAM	LENGTH	SLOPE	HORIZ	TO VERT	MAINIING	DEPTH	JK
NUMBER	CONNECTION				(FT)	(FT)	(FT/FT)	L	R	11	(FT)	
200	299	0	4	CHANNEL	24.0	900.	.0300	.0	. 0	.020	1.00	0
				OVERFLOW	24.0	0.	.0010	10.0	10.0	.100	2.00	
202	129	0	4	CHAINIEL	2.0	1500.	.0060	2.0	2.0	.040	2.00	0
				OVERFLOW	10.0	0.	.0010	40.0	40.0	.150	10.00	
203	5	0	4	CHAIRIEL	2.0	1000.	.0030	2.0	2.0	.040	2.00	0
				OVERFLOW	10.0	Ο.	.0010	40.0	40.0	.150	10.00	
204	118	Ō	4	CHAMIEL	30.0	1300.	.0020	.5	.5	.040	3.00	0
				OVERFLOW	33.0	0.	.0010	20.0	20.0	.100	10.00	
205	37	ō	4	CHAINIEL	1.0	650.	.0050	2.0	2.0	.060	1.00	0
				OVERFLOW	5.0	0.	.0010	50.0	50.0	.060	10.00	

206	39	0	4	CHANNEL	2.0	3380.	.0100	2.0	2.0	+040	2.00	0
				OVERFLOW	5.0	0.	.0010	50.0	50.0	.150	10.00	
207	41	0	5	PIPE	4.0	2600.	.0100	.0	.0	.060	4.00	0
				OVERFLOW	30.0	0.	.0010	10.0	10.0	.030	10.00	
208	117	0	4	CHAINNEL	2.0	1750.	.0080	.5	.5	.030	6.00	0
				OVERFLOW	8.0	0.	.0010	10.0	10.0	.060	10.00	
209	114	0	4	CHANNEL	3.0	1250.	.0100	1.0	1.0	.020	3.00	0
				OVERFLOW	12.0	0.	.0010	50.0	6.0	.100	10.00	
210	89	0	4	CHANNEL	2.0	1600.	.0050	1.0	1.0	+060	2.00	0
				OVERFLOW	6.0	0.	.0010	50.0	50,0	.150	10.00	
211	75	0	4	CHANNEL	3.0	2650.	.0040	1.0	1.0	.030	3.00	0
2.2				OVERFLOW	9.0	0.	.0010	50.0	50.0	.100	10,00	
212	97	0	5	PIPE	5.0	1325.	.0030	+ 0	.0	.020	5.00	0
				OVERFLOW	24.0	0.	.0010	10.0	10.0	.030	10.00	
213	93	0	4	CHAINEL	2.0	2740.	.0120	2.0	2.0	.040	2.00	0
				OVERFLOW	5.0	0.	.0010	50.0	50.0	.150	10.00	
214	90	0	4	CHAINIEL	10.0	1400.	.0040	10.0	10.0	.030	3.00	0
				OVERFLOW	10.0	0.	.0010	10.0	10.0	.100	10,00	
215	86	0	5	PIPE	5.0	2000.	.0080	. 0	. 0	.020	5.00	D
				OVERFLOW	24.0	0.	.0010	10.0	10.0	.030	10.00	
216	96	0	4	CHAINIEL	1.0	1200.	.0150	1.0	1.0	.060	1.00	0
				OVERFLOW	5.0	0.	.0010	50.0	50.0	.150	10.00	
217	99	0	4	CHAMIEL	3.0	1520.	.0070	1.0	1.0	.060	5.00	0
				OVERFLOW	5.0	0.	.0010	50.0	50.0	.100	10.00	
218	112	0	4	CHAINEL	2.0	2500.	.0200	1.0	1.0	.020	4.00	0
				OVERFLOW	11.0	Ο.	.0010	6.0	50.0	.150	10.00	
219	98	0	4	CHANNEL	4.0	900.	.0020	1.0	1.0	.020	4.00	0
				OVERFLOW	11.0	0.	.0010	50.0	50.0	.100	10.00	
220	115	0	4	CHAINEL	4.0	650.	.0020	1.0	1.0	.020	4.00	0
				OVERFLOW	11.0	0.	.0010	50.0	50.0	.100	10.00	
221	75	0	5	PIPE	4.5	1325.	.0030	.0	.0	.020	4.50	0
				OVERFLOW	24.0	0.	.0010	10.0	10.0	.030	10.00	
222	72	0	4	CHANNEL	3.0	2600.	.0020	1.0	1.0	.020	4.00	0
				OVERFLOW	11.0	ο.	.0010	50.0	50.0	.100	10.00	
223	116	0	4	CHANNEL	1.0	1850.	.0100	1.0	1.0	.030	3.50	0
				OVERFLOW	8.0	0.	.0010	10.0	10.0	.060	10.00	
224	69	0	4	CHANNEL	1.0	3200.	.0050	1.0	1.0	.040	3.50	0
				OVERFLOW	8.0	0.	.0010	10.0	10.0	.060	10.00	
225	130	0	5	PIPE	3.0	720.	.0080	.0	. 0	.020	3.00	0

				OVERFLOW	30.0	ο.	.0010	10.0	10.0	.060	10.00	
226	77	0	4	CHANNEL	1.0	1250.	.0090	1.0	1.0	.020	1.00	0
220	.,	Ū.	-	OVERFLOW	3.0	0.	.0010	50.0	50.0	.150	10.00	
227	116	0	-4	CHAIMEL	1.0	2600.	.0020	1.0	1.0	.020	2.00	0
an an a	1.0			OVERFLOW	7.0	ο.	.0010	10.0	10.0	.060	10.00	
228	68	U	4	CHAIRIEL	3.0	2600.	.0020	1.0	1.0	.020	4.00	0
		0.40		OVERFLOW	5.0	0.	.0010	50.0	50.0	.100	10.00	
229	27	0	4	CHAINJEL	1.0	3200.	.0070	1.0	1.0	.060	1.00	0
				OVERFLOW	3.0	0.	.0010	50.0	50.0	.100	10.00	
230	70	0	4	CHANNEL	1.0	5100.	.0070	10.0	10.0	.060	1.00	0
				OVERFLOW	20.0	0.	.0010	50.0	50.0	.150	10.00	
231	27	0	4	CHANNJEL	3.0	1200.	.0100	1.0	1.0	.060	3,00	0
				OVERFLOW	9.0	Ο.	.0010	50.0	6.0	.150	10.00	
232	26	0	4	CHANNEL	2.0	2600.	.0060	1.0	1.0	.060	2.00	0
				OVERFLOW	6.0	0.	.0010	50.0	50.0	.150	10.00	
233	15	0	4	CHAINEL	2.0	1300.	.0090	1.0	1.0	.060	2.00	0
				OVERFLOW	6.0	Ο.	.0010	50.0	50.0	.150	10.00	
234	68	0	4	CHANNEL	3.0	3900.	.0070	1.0	1.0	.020	3.00	0
				OVERFLOW	12.0	Ο,	,0010	50.0	б.O	.060	10.00	
235	55	0	-4	CHAINIEL	3.0	2600.	.0120	1.0	1.0	.020	3.00	0
				OVERFLOW	12.0	Ο.	.0010	50.0	ó.O	.100	10.00	
236	55	0	4	CHAIRIEL	2.0	1400.	.0100	1.0	1.0	.060	2.00	0
				OVERFLOW	б. 0	Ο.	.0010	50.0	50.0	.150	10.00	
237	54	0	4	CHAINIEL	1.0	1400.	.0100	1.0	1.0	.060	1.00	0
				OVERFLOW	Э.О	0.	.0010	50.0	50.0	.150	10.00	
238	22	0	4	CHAMJEL	2.0	2800.	.0030	1.0	1.0	.020	2.00	0
				OVERFLOW	h.0	0.	.0010	6.0	50.0	.100	10.00	
239	23	0	4	CHAIRIEL	1.0	1300.	.0060	2.0	2.0	.020	1.50	0
				OVERFLOW	5.0	0.	.0010	ΰ.0	50.0	.150	10,00	
240	24	0	4	CHADDEL.	1.0	1250.	.0060	7.0	1.0	.060	1.00	0
				OVERFLOW	5.0	Ο.,	.0010	6.0	50.0	.150	10,00	
242	23	0	-1	CHAIRFEL	2.1)	1400.	.0000	1.0	1.0	.010	3.00	0
				OVERFLOW	÷.0	0.	.0010	50.0	6.0	,150	10,00	
243	22	0	4	CHAINIEL	٥.٤	1800.	.0150	1.0	1.0	.020	3.00	0
				OVERFLOW	13.0	0.	.0010	50.0	ú.U	.100	10,00	
244	71	0	4	CHAIRIEL	2.0	1350,	,0080	1.()	1.0	.060	2.00	0
				OVERFLOW	6.0	0.	,0010	50.0	6.0	.150	10,00	
245	18	0	4	CHAMJEL	2.0	1300.	,0020	1.0	1.0	.060	2,00	0
				OVERFLOW	б.О	0.	.0010	50.0	50.0	.150	10.00	

246	27	0	4	CHAINJEL	2.0	2600.	.0020	1.0	1.0	.020	2.00	0
2				OVERFLOW	6.0	0.	.0010	6.0	50.0	.100	10.00	
247	39	0	5	PIPE	4.0	1350.	.0100	.0	.0	.030	4.00	0
				OVERFLOW	30.0	0.	.0010	10.0	10.0	.030	10.00	
248	21	0	4	CHANNEL	3.0	1320.	.0050	1.0	1.0	.020	3.00	0
210				OVERFLOW	12.0	0.	.0010	50.0	6.0	.100	10.00	
249	101	0	4	CHANNEL	2.0	2600.	.0100	1.0	1.0	.050	3.50	0
645				OVERFLOW	3.0	0.	.0010	50.0	50.0	.150	10.00	
250	59	0	4	CHANNEL	2.0	800.	.0220	1.0	1.0	.060	1.00	0
200				OVERFLOW	3.0	0.	.0010	50.0	50.0	.150	10.00	
251	102	0	4	CHANNEL	1.0	2200.	.0100	1.0	1.0	.060	1.00	0
£ 7 £				OVERFLOW	3.0	0.	.0010	50.0	50.0	.150	10.00	
252	51	0	4	CHAINIEL	1.0	5100.	.0150	1.0	1.0	.050	1.00	0
مه اي من				OVERFLOW	3.0	0.	.0010	50.0	50.0	.150	10.00	
253	73	0	4	CHAINEL	3.0	1000.	.0030	1.0	1.0	.020	3.00	0
222				OVERFLOW	12.0	0.	.0010	50.0	6.0	.100	10.00	
254	40	0	4	CHAINIEL	2.0	1350.	.0030	.5	.5	.030	6.00	0
201				OVERFLOW	8.0	ο.	.0010	50.0	50.0	.150	10.00	
255	35	0	5	PIPE	4.0	1325.	.0100	.0	. 0	.030	4.00	0
				OVERFLOW	30.0	0.	.0010	10.0	10.0	.030	10.00	
256	108	0	5	PIPE	4.5	2400.	.0100	.0	.0	.030	4.50	0
200				OVERFLOW	30.0	0.	.0010	10.0	10.0	.030	10.00	
257	42	0	5	PIPE	4.5	1600.	.0400	1.0	1.0	.030	4.50	0
				OVERFLOW	9.0	0.	.0010	50.0	50.0	.060	10.00	
258	119	0	4	CHANNEL	30.0	1500.	.0020	.5	.5	.040	3.00	0
				OVERFLOW	33.0	0.	.0010	20.0	2.0	.100	10.00	
259	120	0	4	CHAINEL	30.0	1500.	.0020	.5	.5	.040	3.00	0
				OVERFLOW	33.0	Ο.	.0010	20.0	2.0	.100	10,00	
260	121	0	4	CHANNEL	30.0	1100.	.0020	.5	.5	.040	3.00	0
				OVERFLOW	33.0	0.	.0010	20.0	2.0	.100	10.00	
261	122	0	4	CHAINEL	30,0	1800.	.0020	.5	. 5	+040	3,00	0
				OVERFLOW	33.0	0.	.0010	20.0	2.0	.100	10.00	
262	123	0	4	CHAINJEL	30.0	2600.	.0020	.5	.5	.040	3,00	0
				OVERFLOW	33.0	0.	.0010	20.0	2.0	.100	10.00	
263	124	0	4	CHANNEL	30.0	1000.	.0020	.5	. 5	.040	3.00	0
				OVERFLOW	33.0	0.	.0010	20.0	2.0	.100	10.00	
264	125	0	4	CHANNEL	30.0	2100.	.0020	.5	.5	.040	3.00	0
17000				OVERFLOW	33.0	0.	.0010	20.0	2.0	.100	10.00	
265	126	0	4	CHANNEL	30.0	2400.	.0020	.5	. 5	.040	3.00	0
Contraction (

				OVERFLOW	33.0	0.	.0010	20.0	2.0	.100	10.00	
266	127	0	4	CHANNEL	30.0	2200.	.0020	+ 5	. 5	.040	3.00	0
				OVERFLOW	33.0	0.	.0010	20.0	2.0	.100	10.00	
267	3	0	4	CHAINEL	1.0	4240.	.0080	2.0	2.0	.080	1.00	0
				OVERFLOW	5.0	0.	.0010	50.0	50.0	.150	10.00	
268	13	0	4	CHANNEL	3.0	2900.	.0050	2.0	2.0	.020	3.00	0
				OVERFLOW	12.0	0.	.0010	50.0	6.0	.060	10.00	
269	9	0	4	CHANNEL	1.0	1610.	.0140	2.0	2.0	.080	1.00	0
				OVERFLOW	5.0	0.	.0010	50.0	50.0	.150	10.00	
270	74	0	4	CHANNEL	1.0	50.	.0100	1.0	1.0	.060	1.00	0
				OVERFLOW	3.0	0.	.0010	50.0	50.0	.150	10,00	
271	15	0	4	CHANNEL	1.0	1325.	.0050	2.0	2.0	.060	2.00	0
				OVERFLOW	3.0	0.	.0010	50.0	50.0	.150	10.00	
274	77	0	4	CHAMINEL	2.0	2600.	.0020	1.0	1.0	.020	3.00	0
				OVERFLOW	3.0	٥.	.0010	50.0	50.0	.150	10.00	
275	79	0	4	CHANNEL	3.0	1950.	.0080	2.0	2.0	.020	3.00	0
				OVERFLOW	12.0	0.	.0010	50.0	6.0	.100	10.00	
1	128	0	3		1.0	1.	.1000	1.0	1.0	.010	1.00	0
2	128	0	3		1.0	1.	.1000	1.0	1.0	.010	1.00	0
з	120	0	3		1.0	1.	.1000	1.0	1.0	.010	1.00	0
4	203	0	3		1.0	1.	.1000	1.0	1.0	.010	1.00	0
5	202	0	3		1.0	1.	.1000	1.0	1.0	.010	1.00	0
6	119	0	3		1.0	1.	.1000	1.0	1.0	.010	1.00	Ó
7	118	0	3		1.0	1.	.1000	1.0	1.0	.010	1,00	0
6	269	0	З		1.0	1.	.1000	1.0	1,0	+010	1.00	0
9	12	0	3		1.0	1.	.1000	1.0	1.0	.010	1.00	0
10	122	0	3		1.0	1.	.1000	1.0	1.0	.010	1,00	0
11	121	0	3		1.0	1.	.1000	1.0	1.0	.010	1.00	0
12	268	0	3		1.0	1.	.1000	1.0	1.0	.010	1.00	0
13	123	0	3		1.0	1.	.1000	1.0	1.0	.010	1.00	.0
14	124	0	3		1.0	1.	.1000].()	1.0	.010	1.00	0
15	232	0	3		1.0	1.	.1000	1.0	1.0	.010	1.00	.0
16	271	0	3		1.0	1.	.1000	1.0	1.0	.010	1,00	0
17	244	0	3		1.0	1.	.1000	1.0	1.0	.010	1.00	0
18	242	0	3		1.0	1.	.1000	1.0	1.0	.010	1.00	0
19	240	0	3		1.0	1.	.1000	1.0	1.()	+010	1.00	0
20	200	0	3		1,0	1.	.1000	1.0	1.0	.010	1,00	0
21	243	0	3		1.0	1.	.1000	1.0	1+0	.010	1.00	0
22	255	4	3		1.0	1.	.1000	1.0	1.0	.010	1,00	246

23	254	DIVERSION .0 4	TO GUTTER .0 3	NUMBER 246 127.0	- TOTAL .0	Q VS 1 300.0 1.0	DIVERTED Q 173.0 1.	IN CFS 500.0 .1000	373.0	1.0	.010	1.00	238
23	256			NUMBER 238	- TOTAL		DIVERTED Q	IN CFS		2.0			
		.0	.0	131.0	.0	300.0	170.0	500.0	370.0		.010	1,00	0
24	239	0	3			1.0 1.0	1.	.1000	1.0	1.0	.010	1,00	0
25 26	229 231	0	3			1.0	1.	.1000	1.0	1.0	.010	1,00	0
28	254	4	3			1.0	1.	.1000	1.0	1.0	.010	1.00	228
1997		DIVERSION	TO GUTTER	INMBER 228	- TOTAL		DIVERTED Q						
		.0	.0	128.0	.0	300.0	172.0	500.0 .1000	372.0 1.0	1.0	.010	1.00	0
28	299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
29 30	299 31	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
31	299	0	3			1.0	1.	.1000	1.0	1.0	+010	1.00	0
32	299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
33	299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
34 35	206 247	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
36	299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
37	299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
38	299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
39	207	0	3			1.0 1.0	1. 1.	.1000	1.0	1.0	.010	1.00	0
40 41	208 299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
42	299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
43	299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
44	299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
45 46	299 126	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
46	126	0	3			1.0	1.	.1000	1.0	1.0	.010	1,00	0
48	299	0	3			1.0	1.	.1000	1.0	1.0	.010	1,00	0
49	299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
50	252	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
51 52	299 299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
53	252	0	3			1.0	1.	.1000			.010	1.00	0
54	236	0	3			1.0	1.	.1000	1.0	1.0 1.0	.010	1.00	0
55	234	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
		0	2			1.0	1.	.1000	1.0	1.0	.010	1.00	0
56 57	224 230	0	3			1.0	1.	.1000	1.0	1.0	.010	1,00	0
58	299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
59	251	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
60 61	299 249	0 0	3			1.0	1.	.1000	1.0	1.0 1.0	.010	1.00	0
62	299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
63	299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
64	226	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
65 66	299 299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
67	217	ů 0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
68	253	4	3			1.0	1.	.1000	1.0	1,0	.010	1.00	227
		DIVERSION .0	TO GUTTER	NUMBER 227 112.0	- TOTAL	Q VS 1		IN CFS 500.0	388.0				
69	225	0	.0	110.0		1.0	1.	.1000	1.0	1.0	.010	1.00	0
70	221	4	З			1.0	1.	.1000	1.0	1.0	.010	1.00	274
				HUMBER 274					400.0				
71	248	.0 0	.0 3	100.0	.0	300.0	200.0	500.0 .1000	400.0	1.0	.010	1.00	0
72	70	0	3			1.0	1.	.1000	1.0	1.0	.010	1,00	0
73	209	0	3			1.0	1.	.1000	1.0	1.0	.0:0	1.00	0
74	211	0	3			1.0	1.	.1000	1.0	1.0	.010	1,00	0
75	212	0	3			1.0 1.0	1.	.1000	1.0	1.0	.010	1.00	0
76 77	214 220	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
78	213	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
79	299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
80	299	0	3			1.0	1.	.1000	1.0	1.0	.010	1,00	0
81	299	0	3			1.0	1.	.1000	1.0	1.0 1.0	.010	1.00	0
82 83	299 299	0	د 3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
84	299	0	Э			1.0	1.	.1000	1.0	1.0	.010	1.00	0
85	299	0	З			1.0	1.	.1000	1.0	1.0	.010	1.00	0
86	299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
87	270 299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
88 89	299	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0
90	210	0	3			1.0	1.	.1000	1.0	1.0	.010	1.00	0

91	299	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
92	299	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
93	299	0	3	1.0	1,	.1000	1.0	1.0	.010	1.00	0
94	299	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
95	216	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
96	299	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
97	215	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
98	218	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
99	299	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
100	299	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
101	250	0	3	1.0	1.	.1000	1.0	1.0	.010	1,00	0
102	299	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
103	233	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
104	237	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
105	235	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
106	245	0	3	1.0	1.	.1000	1.0	1.0	.010	1,00	0
107	28	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
108	205	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
109	299	0	З	1.0	I.	.1000	1.0	1.0	.010	1.00	0
110	299	0	3	1.0	1.	.1000	1.0	1+0	.010	1.00	0
111	299	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
112	299	0	Э	1.0	1.	.1000	1.0	1.0	.010	1.00	0
113	299	0	3	1,0	1.	.1000	1+0	1.0	.010	1.00	0
114	275	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
115	219	o	3	1.0	1.	.1000	1.0	1.0	. 310	1.00	U
116	222	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
117	257	0	3	1.0	1.	.1000	1.0	1.0	.010	1,00	0
118	258	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
119	259	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
120	260	0	3	1.0	1.	.1000	1.0	1.0	.010	1,00	0
121	261	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
122	262	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
123	263	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
124	264	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
125	265	0	Э	1.0	1.	.1000	1.0	1.0	.010	1.00	0
126	266	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
127	299	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
128	267	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0
129	204	0	3	1.0	1.	.1000	1.0	1.0	.010	1.00	0

.

1.0 1. .1000 1.0 1.0 .010 1.00 0

130 223 0 3 OTOTAL NUMBER OF GUTTERS/PIPES, 202

ST CHARLES MESA 100-YEAR SELECTED CONDITION COUNTY, PUEBLO, KIOWA ENGINEERING FILE:SC100SEL.SIN

*** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS ***

CONVEYANCE	PEAK	STAGE	STORAGE	TI	ME
ELEMENT	(CFS)	(FT)	(AC-FT)	(HR/	(MIN)
COCRET		And 19001			
4	97.	(DIRECT	FLOW)	0	50.
203	65.	2.8		1	25.
5	156.	(DIRECT	FLOW)		5.
202	89.	2.8		2	0.
129	89.	(DIRECT	FLOW)	2	0.
7	45.	(DIRECT	FLO:1)	0	
204	89.	1.4		2	10.
2	219.	(DIRECT	FLOW)	0	50.
1	119.	(DIRECT	FLOW)	0	50.
118	89.	(DIRECT	FLOW)	2	10.
128	338.	(DIRECT	FLOW)	0	50.
Ď	205.	(DIRECT	FLOW)	0	45.
258	88.	1.4		2	15.
267	22.	1.9		З	20.
119	236.	(DIREC'T	FLOW)	0	50.
3	176.	(DIRECT	FLOW)	0	55.
259	225.	2.5		0	55.
56	198.	(DIRECT	FLOW)	0	50.
8	253.	(DIREC'T	FLOW)	0	45.
120	400.	(DIRECT	FLOW)	0	55.
224	104.	4.1		1	30.
17	293.	(DIRECT	FLOW)	0	35.
269	233.	1.8		2	25.
11	178.	(DIREC'F	FLOW)	0	50.
11	1.0.	a en a catalon de la compañía de la Compañía de la compañía			

APPENDIX C

SAMPLE DETENTION BASIN SIZING CRITERIA

DOUGLAS COUNTY STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA

CHAPTER 14 DETENTION

14.1 INTRODUCTION

The criteria presented in this section shall be used in the design and evaluation of all detention facilities for the County. The review of all planning submittals (refer to Chapter 2) will be based on the criteria presented in this section.

The main purpose of a detention facility is to store the excess storm runoff associated with an increased basin imperviousness and discharge this excess at a rate similar to the rate experienced from the basin without development. The value of such detention facilities is discussed in Section-3.3.6. Any special design conditions which cannot be defined by these CRITERIA shall be reviewed by the County Engineer before proceeding with design.

The various detention methods are defined on the basis of where the facility is constructed, such as open space detention, parking lot, underground or rooftop. The County permits all methods of detention except for rooftop (refer to Section 3.3.6).

14.2 WATER QUALITY ENHANCEMENT

Special detention design guidelines to include infiltration for detention ponds are presented in Chapter 15, "Water Quality Enhancement."

14.3 DESIGN CRITERIA

14.3.1 Volume and Release Rates

The minimum required volume shall be determined using the CUHP method or the following equations. These empirical equations were developed as part of the UD&FCD hydrology research program. The equations are based on a computer modeling study and represent average conditions. One of the most difficult aspects of storm drainage is obtaining consistent results between various methods for estimating detention requirements. These equations will provide consistent and more effective approaches to the sizing of onsite detention ponds. For larger water sheds where the Colorado Urban Hydrograph procedure can be used (i.e., ±90 acres), hydrograph routing procedures will be permitted in the design of these ponds, provided the historic imperviousness of two percent or less is used.

Minimum Detention Volume:

V = KA

For the 100-year,

$$K_{100} = (1.78I - 0.002I^2 - 3.56)/1000$$

For the 10-year,

I = Developed basin imperviousness (%)

A = Tributary area (Acres)

The maximum release rates at the ponding depths corresponding to the 10- and 100-year volumes are as follows:

ALLOWABLE RELEASE RATES FOR

CONTROL FREQUENCY

10-year

100-year

The predominate soil group for the total basin area tributary to the detention pond shall be used for determining the allowable release rate. Information on the soils in the County can be found in Reference-25.

14.3.2 Design Frequency

All detention facilities are to be designed for two storm frequencies: the 10-year and the 100-year recurrence interval floods.

14.3.3 Hydraulic Design Hydraulic design data for sizing of detention facilities outlet works is as follows:

Ι. Weir flow The general form of the equation for horizontal crested weirs is:

$0 = CL(H)^{3/2}$

Where Q = discharge (cfs)

C = weir coefficient

- L = horizontal length (feet)
- H = total energy head (feet)

Another common weir is the v-notch, whose equation is as follows:

 $0 = 2.5 \tan (0/2) H^{5/2}$

Where θ = angle of the notch at the apex (degrees)

When designing or evaluating weir flow, the effects of submergence must be considered. A single check on submergence can be made by comparing the tailwater to the headwater depth. The example calculation for a weir design on Fig. 1403 illustrates the submergence check.

(Equation 1405) $K_{10} = (0.95I - 1.90)/1000$ (Equation 1406)

(Equation 1404)

Where V = required volume for the 100- or 10-year storm (acre-feet)

R	DETENTION	PONDS -	- CFS/ACRE
	S	DIL GROU	JP
_	A	В	C & D
	0.13	0.23	0.30
	0.50	0.85	1.00

(Equation 1401)

(Table 1401)

(Equation 1402)

2. Orifice Flow

The equation governing the orifice opening and plate is the orifice flow equation:

$$Q = C_{d} A (2gh)^{1/2}$$

(Equation 1403)

Where

Q = Flow (cfs)

C_d = Orifice coefficient

 $A = Area (ft^2)$

- g = Gravitational constant = 32.2 ft/sec²
- h = Head on orifice measured from centerline (ft)

An orifice coefficient (C-sub d) value of 0.65 shall be used for sizing of square edged orifice openings and plates.

14.4 DESIGN STANDARDS FOR OPEN SPACE DETENTION

14.4.1 State Engineer's Office

Any dam constructed for the purpose of storing water, with a surface area, volume, or dam height as specified in Colorado Revised Statues 37-87-105 as amended, shall require the approval of the plans by the State Engineer's Office. All detention storage areas shall be designed and constructed in accordance with these criteria. Those facilities subject to state statutes shall be designed and constructed in accordance with the criteria of the state.

14.4.2 Grading Requirements

Slopes on earthern embankments less than 5 feet in height shall not be steeper than 4 (horizontal) to 1 (vertical). For embankment heights between 5' and 10', the slopes shall not be steeper than 3 (horizontal) and 1 (vertical), but horizontal slope distance shall not be less than 20'. For embankments greater than 10 feet in height, the slopes shall be such to maintain slope stability, but horizontal slope distance shall not be less than 30 feet. Contact the County Engineer for additional requirements. All earthen slopes shall be covered with topsoil and revegetated with grass. Slopes on riprapped earthern embankments shall not be steeper than 3 (horizontal) to 1 (vertical). For grassed detention facilities, the minimum bottom slope shall be 0.5 percent measured perpendicular to the trickle channel.

14.4.3 Freeboard Requirements

The minimum required freeboard for open space detention facilities is 1.0-feet above the computed 100-year water surface elevation.

14.4.4 Trickle Flow Control

All grassed bottom detention ponds shall include a concrete trickle channel or equivalent performing materials and design. Trickle flow criteria is presented in Section 7.4.2.6(a).

14.4.5 Outlet Configuration

Presented on Figure-1401 are two examples for detention pond outlet configuration. A Type I outlet consists of a grated drop inlet, outlet pipe, and an overflow weir in the pond embankment. The control for the 10-year discharge shall be at the throat of the outlet pipe under the head of water as defined on Figure-1401. The grate must be designed to pass the 10-year flow with a minimum of 50 percent blockage (i.e., twice the 10-year flow). Since the minimum size of the outlet pipe is 12-inches, then a control orifice plate at the entrance of the pipe may be required to control the discharge of the design flow (see Section 14.4.2). An example orifice plate is shown on Figure-1402. Other outlet configurations will be allowed provided they meet the requirements of the permitted release rates at the required volume and include proper provisions for maintenance and reliability. The outlet shall be designed to minimize unauthorized modifications which effect proper function.

The difference between the 100-year discharge and the surcharged discharge on the 10-year outlet is released by the overflow weir or spillway. If sufficient pond depth is available, the drop inlet and the grate can be replaced by a depressed inlet with a headwall and trash rack. Depression of the inlet is required to reduce nuisance backup of flow into the pond during trickle flows. The maximum trash rack opening dimension shall be equal to the minimum opening in the orifice plate.

A Type 2 outlet consists of a drop inlet with an orifice controlled inlet for the 10-year discharge and a crest overflow and pipe inlet control for the 100-year discharge. The control for the 10-year discharge occurs at the orifice opening for the head as shown on the figure. The control for the 100-year discharge occurs at the throat of the outlet pipe as shown on the figure. However, the difference between the 100-year and 10-year discharge must pass over the weir and therefore the weir must be of adequate length. The effective weir length (L) occurs for three sides of the box. To ensure the 100-year control occurs at the throat of the outlet pipe, a 50 percent increase in the required weir length is recommended. In addition, the outlet pipe must have an adequate slope to ensure throat control in the pipe.

14.4.6 Embankment Protection

Whenever a detention pond uses an embankment to contain water, the embankment shall be protected from catastrophic failure due to overtopping. Overtopping can occur when the pond outlets become obstructed or when a larger than 100-year storm occurs. Failure protection for the embankment may be provided in the form of a buried heavy riprap layer on the entire downstream face of the embankment or a separate emergency spillway having a minimum capacity of twice the maximum release rate for the 100-year storm. Structures shall not be permitted in the path of the emergency spillway or overflow. The invert of the emergency spillway should be set equal to or above the 100-year water surface elevation.

14.4.7 Vegetation Requirements

All open space detention ponds shall be revegetated by either irrigated sod or natural dry-land grasses in accordance with the manual "Guidelines for Development and Maintenance of Natural Vegetation" by Donald H. Godi & Associates, Inc., July 23, 1984, available through the UD&FCD.

14.5 DESIGN STANDARDS FOR PARKING LOT DETENTION

The requirements for parking lot detention are as follows:

14.5.1 Depth Limitation

The maximum allowable design depth of the ponding is 18-inches for the 100-year flood and 12-inches for the 10-year flood.

14.5.2 Outlet Configuration

The minimum pipe size for the outlet is 12" diameter where a drop inlet is used to discharge to a storm sewer or drainageway. Where a weir and a small diameter outlet through a curb are used, the size and shape are dependent on the discharge/storage requirements. A minimum pipe size of 3" diameter is recommended.

14.5.3 Performance

To assure that the detention facility performs as designed, maintenance access shall be provided in accordance with Section 3.3.7. The outlet shall be designed to minimize unauthorized modifications which effect function. Any repaying of the parking lot shall be evaluated for impact on volume and release rates and are subject to approval by the Engineering Department prior to issuance. A sign shall be attached or posted in accordance with Section 14.4.5.

14.5.4 Flood Hazard Warning

All parking lot detention areas shall have a minimum of two signs posted identifying the detention pond area. The signs shall have a minimum area of 1.5 square feet and contain the following message:

"WARNING

This area is a detention pond and is subject to periodic flooding to a depth of (provide design depth for 10-year or 100-year storm, whichever will be contained in parking lot)."

Any suitable materials and geometry of the sign are permissible, subject to approval by the Engineering Department.

14.6 DESIGN STANDARDS FOR UNDERGROUND DETENTION The requirements for underground detention are as follows:

14.6.1 Materials

Underground detention shall be constructed using corrugated aluminum pipe (CAP) or reinforced concrete pipe (RCP). The pipe thickness cover, bedding, and backfill shall be designed to withstand HS-20 loading.

14.6.2 Configuration

Pipe segments shall be sufficient in number, diameter, and length to provide the required minimum storage volume for the 100-year design. As an option, the 10-year design can be stored in the pipe segments and the difference for the 100-year stored above the pipe in an open space detention (Section 14.4) or in a parking lot detention (Section 14.5). The minimum diameter of the pipe segments shall be 36 inches.

The pipe segments shall be placed side by side and connected at both ends by elbow tee fittings and across the fitting at the outlet (see Figure-1405). The pipe segments shall be continuously sloped at a minimum of 0.25% to the outlet. Manholes for maintenance access (see Section-14.6.4) shall be placed in the tee fittings and in the straight segments of the pipe, when required.

Permanent buildings or structures shall not be placed above the underground detention.

14.6.3 Inlet and Outlet Design

The outlet from the detention shall consist of a short (maximum 25 ft.) length(s) of CAP or RCP with a 12" minimum diameter. A two-pipe outlet may be required to control both design frequencies. The invert of the lowest outlet pipe shall be set at the lowest point in the detention pipes. The outlet pipe(s) shall discharge into a standard manhole (see Standard Detail SD-6) or into a drainageway with erosion protection provided per Sections 11.3.2, 12.2, and 12.3. If an orifice plate is required to control the release rates, the plate(s) shall be hinged to open into the detention pipes to facilitate back flushing of the outlet pipe(s).

Inlet to the detention pipes can be by way of surface inlets and/or by a local private storm sewer system.

14.6.4 Maintenance Access

Access easements to the detention site shall be provided in accordance with Section 3.3.7. To facilitate cleaning of the pipe segments, 3-feet diameter maintenance access ports shall be placed according to the following schedule:

Detention Pipe Size	Maximum Spacing
36" to 54"	150'
60" to 66"	200'
>66"	200'

Figure-1405.

MAINTENANCE ACCESS REQUIREMENTS

Minimum
Frequency

Every pipe segment Every other pipe segment One at each end of the battery of pipes The manholes shall be constructed in accordance with the detail on

14.7 DESIGN EXA		Step 6:	Repeat Step 5 for 10
	Detention Design		$Q_{10} = 0.30 \text{ A}$
<u>Given</u> :	A basin that has the following characteristics:		= 0.30 x 23
	Basin Area (A) = 23 acres		= 6.9 cfs
	Basin Imperviousness (I) = 55%	Example 8:	Detention Outlet Struct
	Predominate Soil Group = D	Given:	Detention pond wit
Required:	100-year and 10-year storage volumes and release rates.		Example 7)
Solution:			Maximum 100-yr relea
Step 1:	Determine K ₁₀₀ using Equation 1405		Maximum 10-year rele
	$K_{100} = (1.78I - 0.002I^2 - 3.56)/1000$		Type 2 outlet (refer
	$= (1.78(55) - 0.002(55)^2 - 3.56)/1000$		100-year water surfa
	≈ 0.0883		10-year water surfac
Step 2:	Determine K ₁₀ using Equation 1406		100-year outlet pipe
	$K_{10} = (0.951 - 1.90)/1000$		10-year outlet orifi
	= 0.0504		18-inch diameter out
Step 3:	Determine minimum required 100-year storage volume using	Required:	10-year and 100-year
	Equation 1404	Solution:	(see Figure 1404)
	V = KA = 0.0883 x 23	Step 1:	Determine 10-year o of orifice = 2.5 f
	= 2.03 acre-feet $(88,500 \text{ ft}^3)$		$A = Q/(C_d (2gh)^{1/2})$
Step 4:	Repeat Step 3 for 10-year storage		= 6.9/(0.65 (2.(32
	V = KA		$= 0.84 \text{ ft}^2$
	$= 0.0504 \times 23$	Step 2:	Determine 10-year or
	= 1.16 acre-feet $(50, 500 \text{ ft}^3)$		Diameter = $(4A/\pi)^{1/2}$
Step 5:	Determine maximum allowed 100-year release rate		= (4(0.84))
	$Q_{100} = 1.00 \text{ A}$		= 1.0 feet
	$= 1.00 \times 23$		Therefore, an orific
	= 23.0 cfs		required at the entr

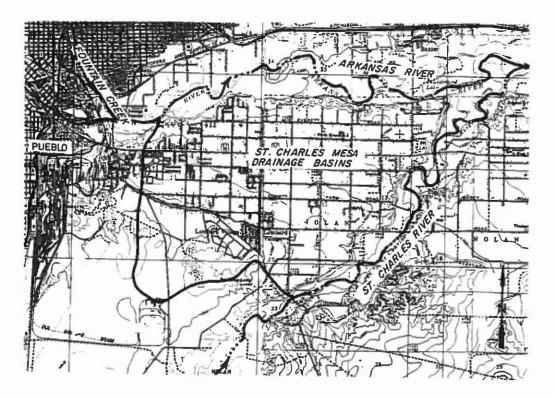
14-7

```
10-year release rate
```

```
cture Design
ith the following characteristics (see
ease rate = 23.0 cfs
lease rate = 6.9 cfs
er to Figure-1401)
face elevation = 105.0
ace elevation = 103.0
pe invert elevation = 98.0
fice invert elevation = 100.0
utlet pipe
ar outlet sizing
orifice opening size, depth to centerline
 ft
                  (Rearranged Equation 1403)
)
(32.2)(2.5))<sup>1/2</sup>)
orifice diameter
./2
(4)/\pi)^{1/2}
et (12-inches)
fice opening with a 12-inch diameter hole is
trance to the outlet box.
```

14-8

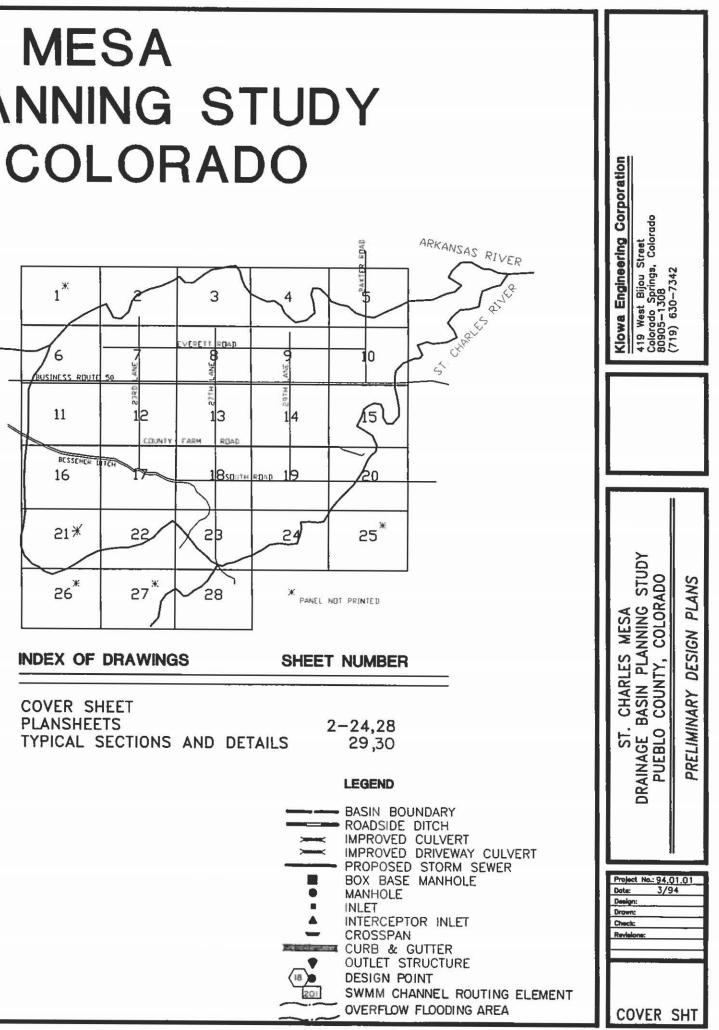
Step 3:	Determine discharge through 10 -year outlet for 100 -year headwater (h = 4.5 ft).	Step 8: Check minimum siz	e for
	$Q = C_d A (2gh)^{1/2}$ (Equation 1403)	Min. area = 2 x	orifi
	$= 0.65(.84) (2(32.2)(4.5)^{1/2})$	= (2)(1.76)
	= 9.3 cfs	Min. area = 3.5	ft²
Step 4:	Determine discharge for sizing of 100-year weir	Since box opening ments are satisfi	
aceb 4.			
	$Q_{weir} = Q_{100} - Q$ (from Step 3) = 23.0 - 9.3	14.8 <u>CHECKLIST</u> To aid the designer and reviewer	, the
	= 13.7 cfs (for sizing weir only)	(1) Earth slopes are to be	: 4:1
Step 5:	Size weir plate for 100-year outlet (18" RCP, h = 6.25 ft)	(2) Minimum freeboard of required.	1
	$A = Q/(C_{d}(2gh)^{1/2})$ (Equation 1403)	(3) Open space detention a	ireas
	$= 23.0/(0.65)(2.(32.2)(6.25))^{1/2})$	(4) Protect embankment for	: ove
	$A = 1.76 \text{ft}^2$	(4) Provide trash racks at	: all
Step 6:	Determine 100-year orifice diameter	(5) Provide signs as requ	ired.
	Diameter = $(4A/\pi)^{1/2}$	(6) Provide maintenance a	ccess
	$= ((4)(1.76)/\pi)^{1/2}$		
	= 1.5 feet = 18 inches		
	Since orifice diameter is approximately equal to the pipe diameter (±15%), then no orifice plate is required.		
Step 7:	Determine minimum box dimensions (i.e., weir length) to assure control of the pipe inlet.		
	$L = O_{weir} / (C(H)^{3/2}) $ (Rearranged Equation 1401)		
	C = 3.4 from Table 1401		
	$L = 13.7/(3.4(2.0)^{3/2})$		
	L = 1.4 ft		
	Since required weir length is only 1.4 feet, selected box dimensions suit construction and maintenance access. A minimum size of 3' x 3' is recommended.		

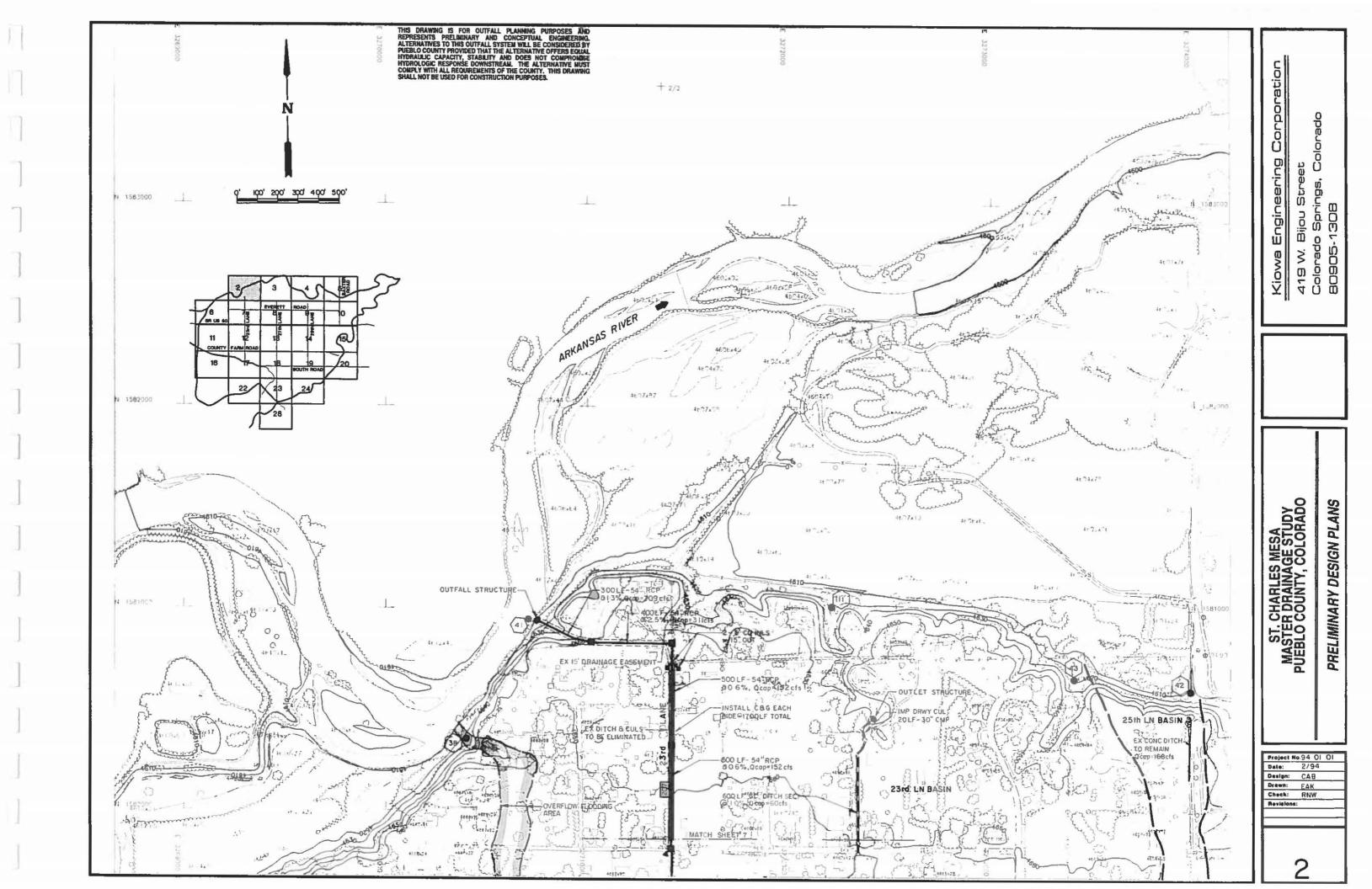

7

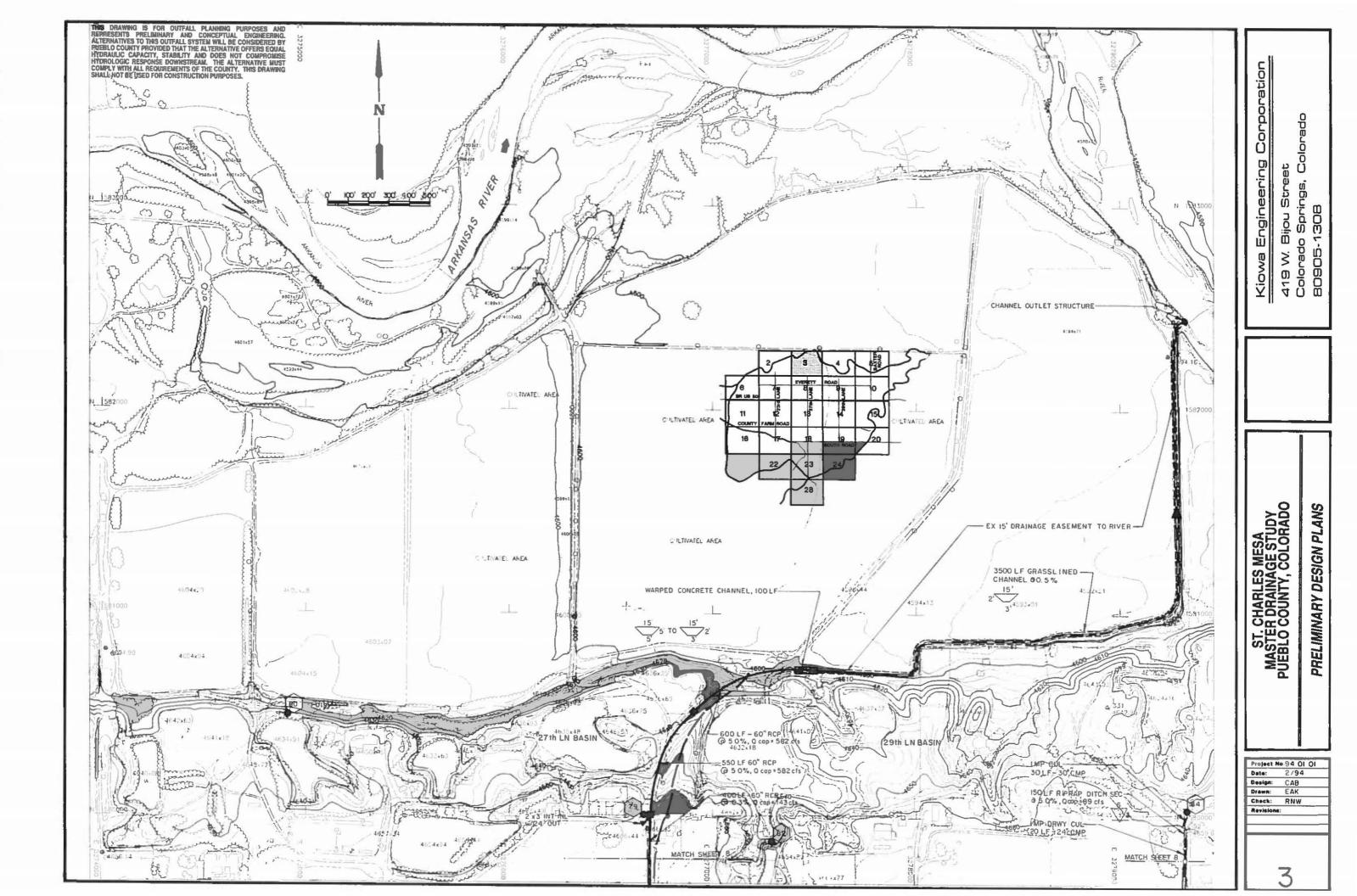
M

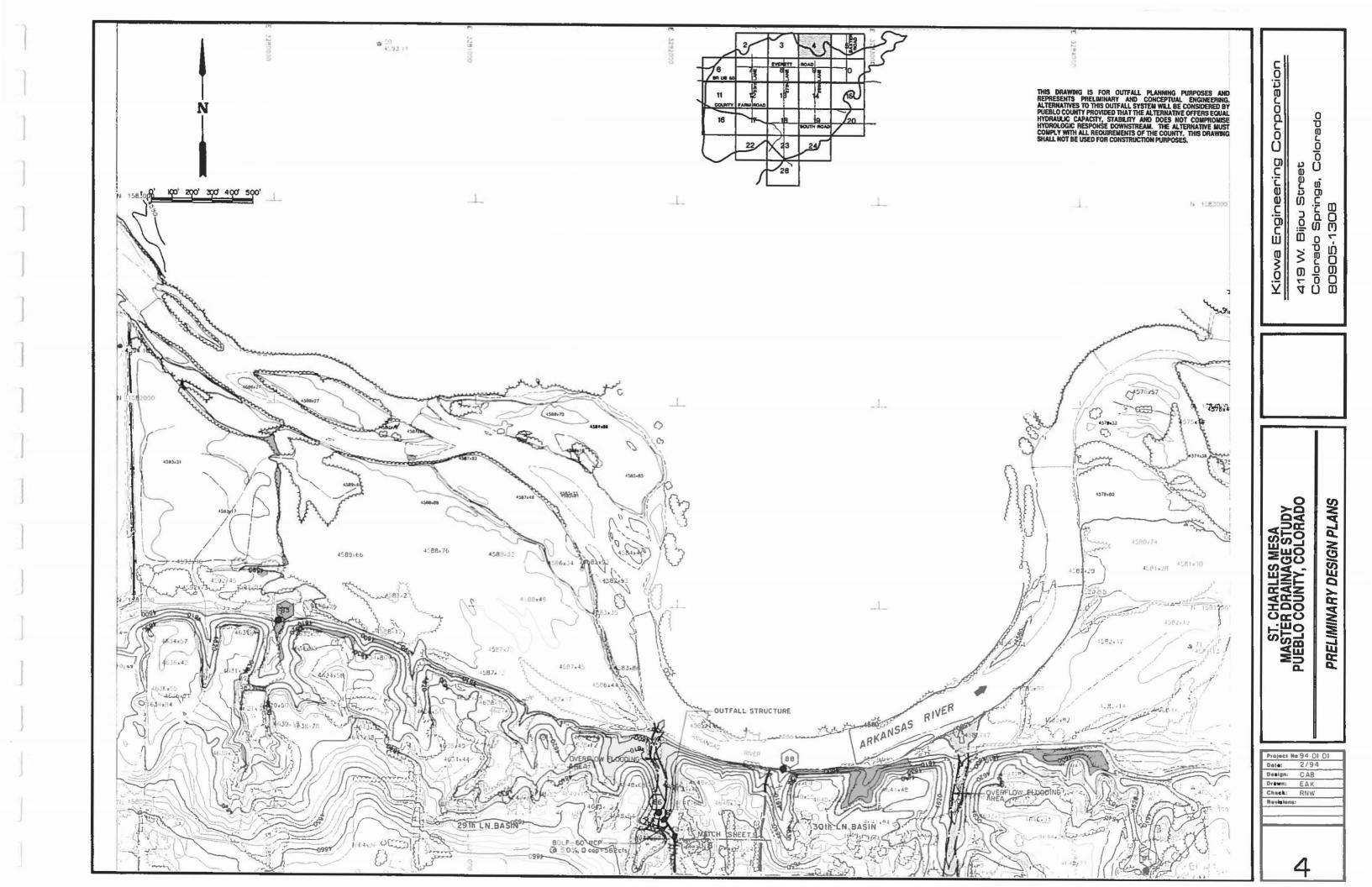
7

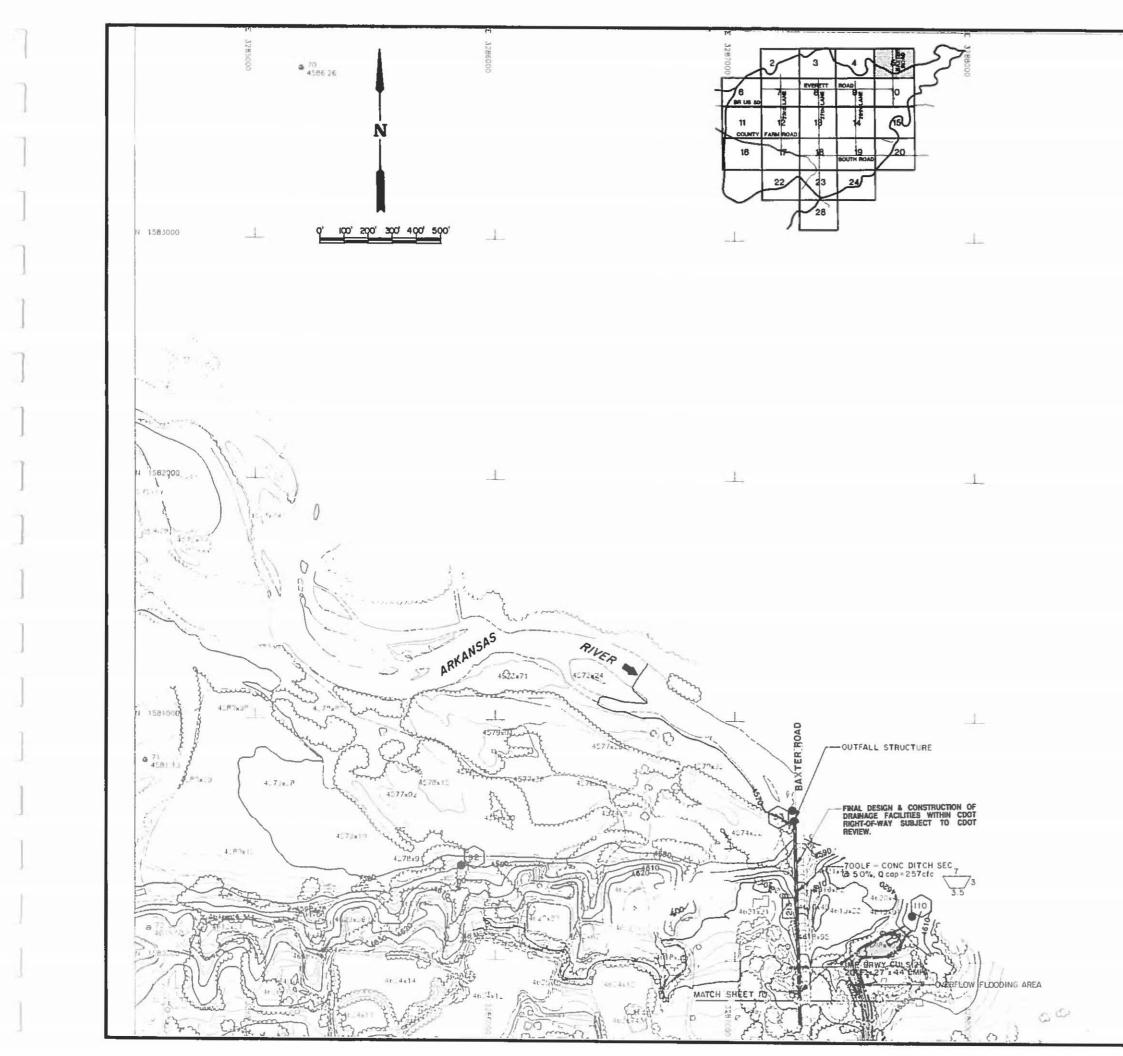
```
for trash rack opening area
ifice area
76)
2
Is 3 x 3 = 9 sq. ft., then design require-
the following checklist has been prepared:
...
the following checklist has been prepared:
...
1 foot for the 100-year detention is
eas to include trickle channels.
overtopping condition by adding riprap.
all outlet structures.
ed.
ess.
```

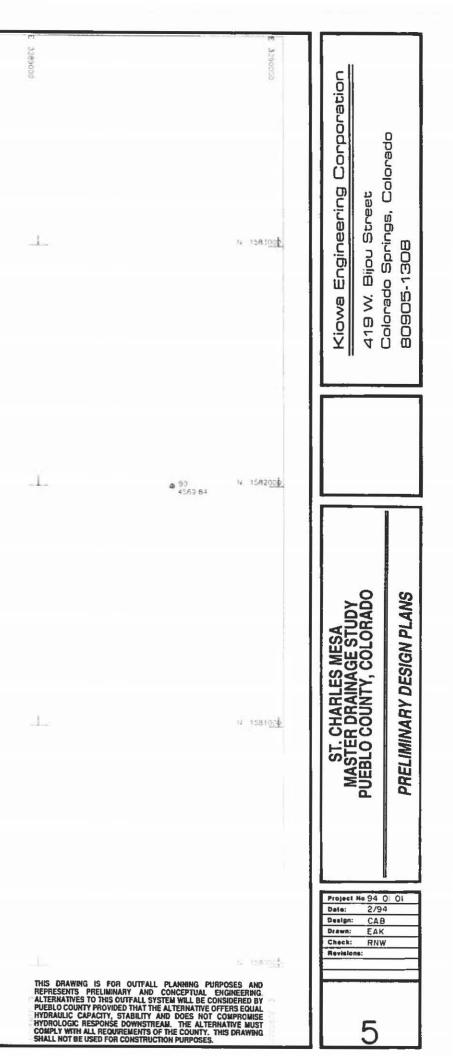

ST. CHARLES MESA DRAINAGE BASIN PLANNING STUDY PUEBLO COUNTY, COLORADO

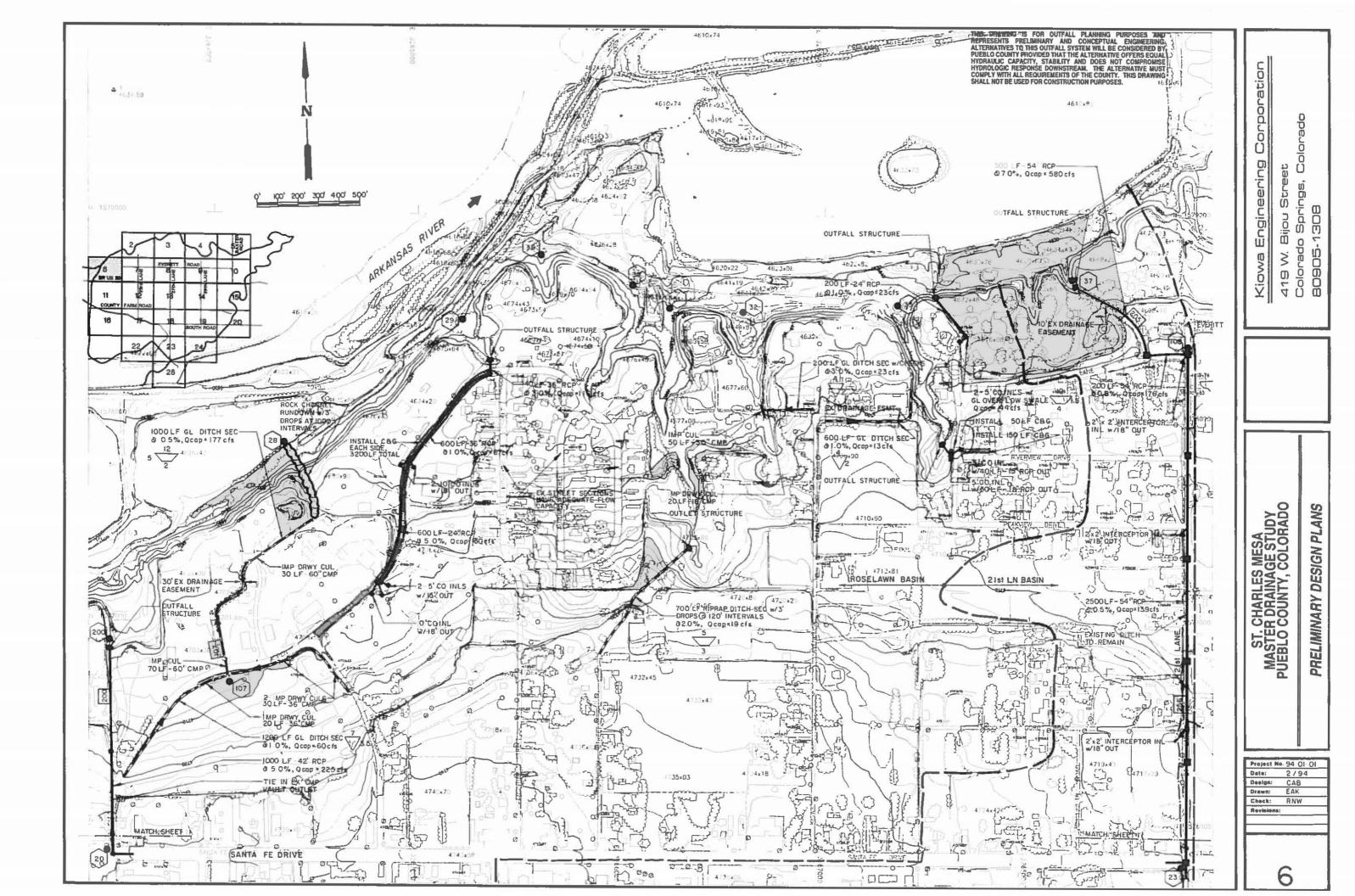


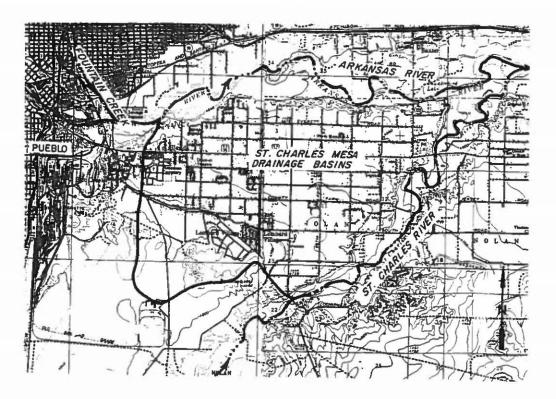

VICINITY MAP

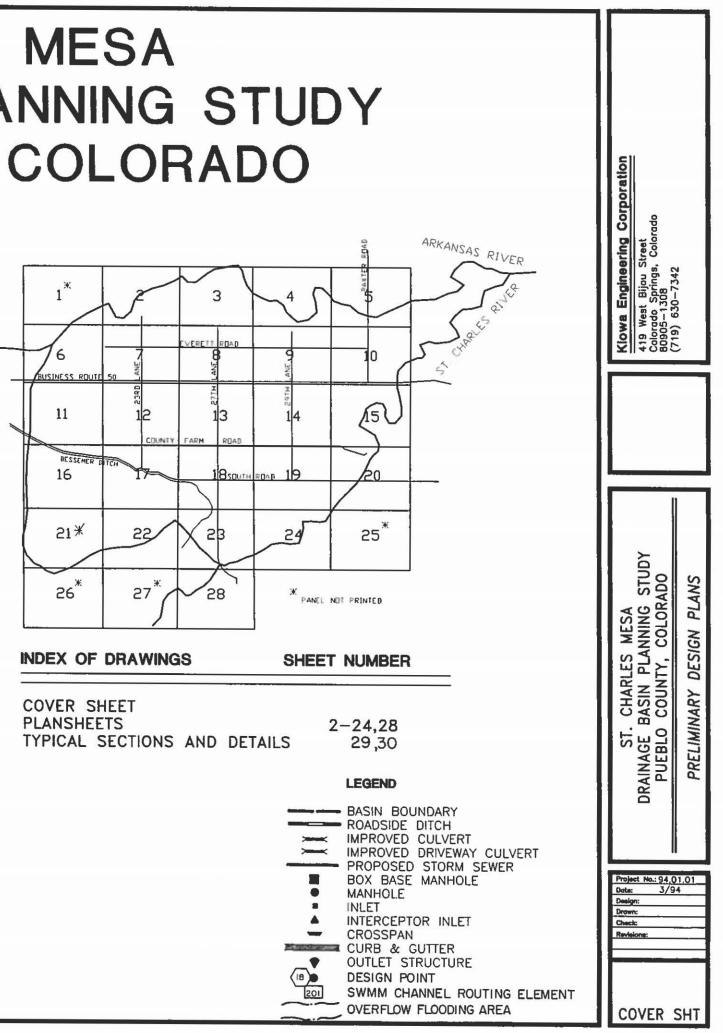

GENERAL NOTES


- 2.
- 3.
- OF ALL FACILITIES SHALL BE PUEBLO COUNTY DESIGN








ST. CHARLES MESA DRAINAGE BASIN PLANNING STUDY PUEBLO COUNTY, COLORADO

VICINITY MAP

GENERAL NOTES

- 2
- 3.
- 4. F ALL FACILITIES SHALL BE
- HEPHESENI AHEAS WHICH COULD BE PRONE FLOODING (2 TO 3-FOOT DEPTHS). DURING FREQUENCY. THE FLOODPLAINS ARE SHOWN FOR PURPOSES ONLY AND ARE NOT TO BE US ESTABLISHMENT OF REGULATORY FLOODPLAINS OR I

FLOW PATH: 23rd Lane

DRAINAGE BASINS: 23rd Lanc

5-YEAR DESIGN: 34 to 92 cfs

EXISTING CONDITIONS:

This portion of the 23rd Lane Basin includes mostly residential uses. The existing drainage facilities include roadside ditches with culverts. The roadside ditch along 23rd Lane acts as an outfall system for drainage generated within the 23rd Lane Basin and it collects local runoff. The existing ditch and culverts are undersized.

FUTURE CONDITIONS:

Future land use is not anticipated to change.

PROPOSED IMPROVEMENTS:

The proposed improvements along 23rd Lane consist of a storm sewer outfall system to convey the upper basin flows to the outfall at the Arkansas River. The existing roadside ditch and culverts along 23rd Lane can be eliminated and replaced with a curb and gutter street section. Intersecting roads may require minor regrading to ensure that local drainage reaches the 23rd Lane street section.

FLOW PATH: 25th Lane

-

DRAINAGE BASINS: 25th Lanc

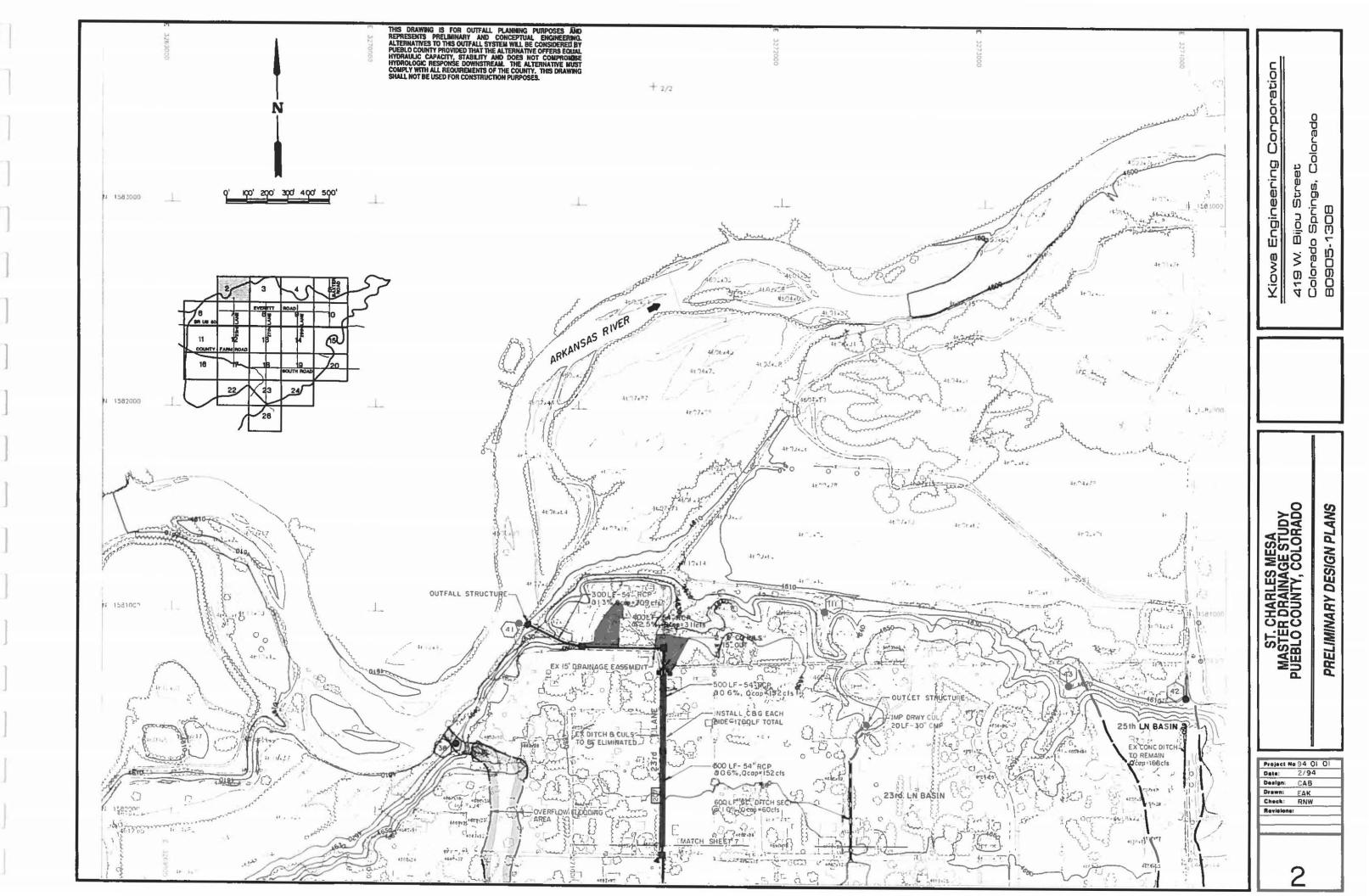
5-YEAR DESIGN: 180 to 195 cfs

EXISTING CONDITIONS:

This portion of the 25th Lane Basin is mostly residential. The existing concrete ditch along 25th Lane is adequate to convey upper basin flows.

FUTURE CONDITIONS:

Future land use is not anticipated to change.


PROPOSED IMPROVEMENTS:

No improvements are proposed along 25th Lane.

Preliminary Design Cost Estimate Sheet 2

23rd Lane Busin

Improvement	Quantity	Unit	Unit Cost Material	Unit Cost Installation	Total Material	Total Installation	Total
15" CMP	40	LF	\$15	\$6	\$600	\$240	\$840
30" CMP	20	LF	\$29	\$10	\$580	\$200	\$780
54 RCP	1700	LF	\$78	\$24	\$132,600	\$40,800	\$173,400
Box Base Manhole	3	EA	\$4,000	\$1,000	\$12,000	\$3,000	\$15,000
5' CO Inlet	2	EA	\$2,500	\$800	\$5,000	\$1,600	\$6,600
Curb and Gutter	1700	LF	\$4	\$2	\$6,800	\$3,400	\$10,200
Grasslined Channel	600	LF	\$5	\$15	\$3,000	\$9,000	\$12,000
Street Paving	570	SY	\$4	\$4	\$2,280	\$2,280	\$4,560
Pavement Replacement	945	SY	\$15	\$5	\$14,175	\$4,725	\$18,900
Outfall Structure	2	EA	\$25,000	\$10,000	\$50,000	\$20,000	\$70,000
Total Estimated Construction	n Cost				\$227,035	\$85,245	\$312,280
Engineering and Contingent	cy (20%)				\$45,407	\$17,049	\$62,45
Total Estimated Cost					\$272,442	\$102,294	\$374,73

FLOW PATH: 27th Lane

-

DRAINAGE BASINS: 27th Lane

5-YEAR DESIGN: 136 to 139 ds

EXISTING CONDITIONS:

This portion of the 27th Lane Basin contains mostly open space areas. The drainage facilities along 27th Lane provides the outfall for the majority of the 27th Lane Basin which extends south to the Bessemer Ditch. The existing roadside ditch and outfall facilities are inadequate to convey the 5-year flow.

FUTURE CONDITIONS:

Future land use is not anticipated to change.

PROPOSED IMPROVEMENTS:

The proposed improvements consist of providing a storm sewer outfall system and grasslined channel to convey the runoff to the Arkansas River. The existing roadside ditch will remain to collect the street and local runoff.

FLOW PATH: 29th Lane

DRAINAGE BASINS: 29th Lane

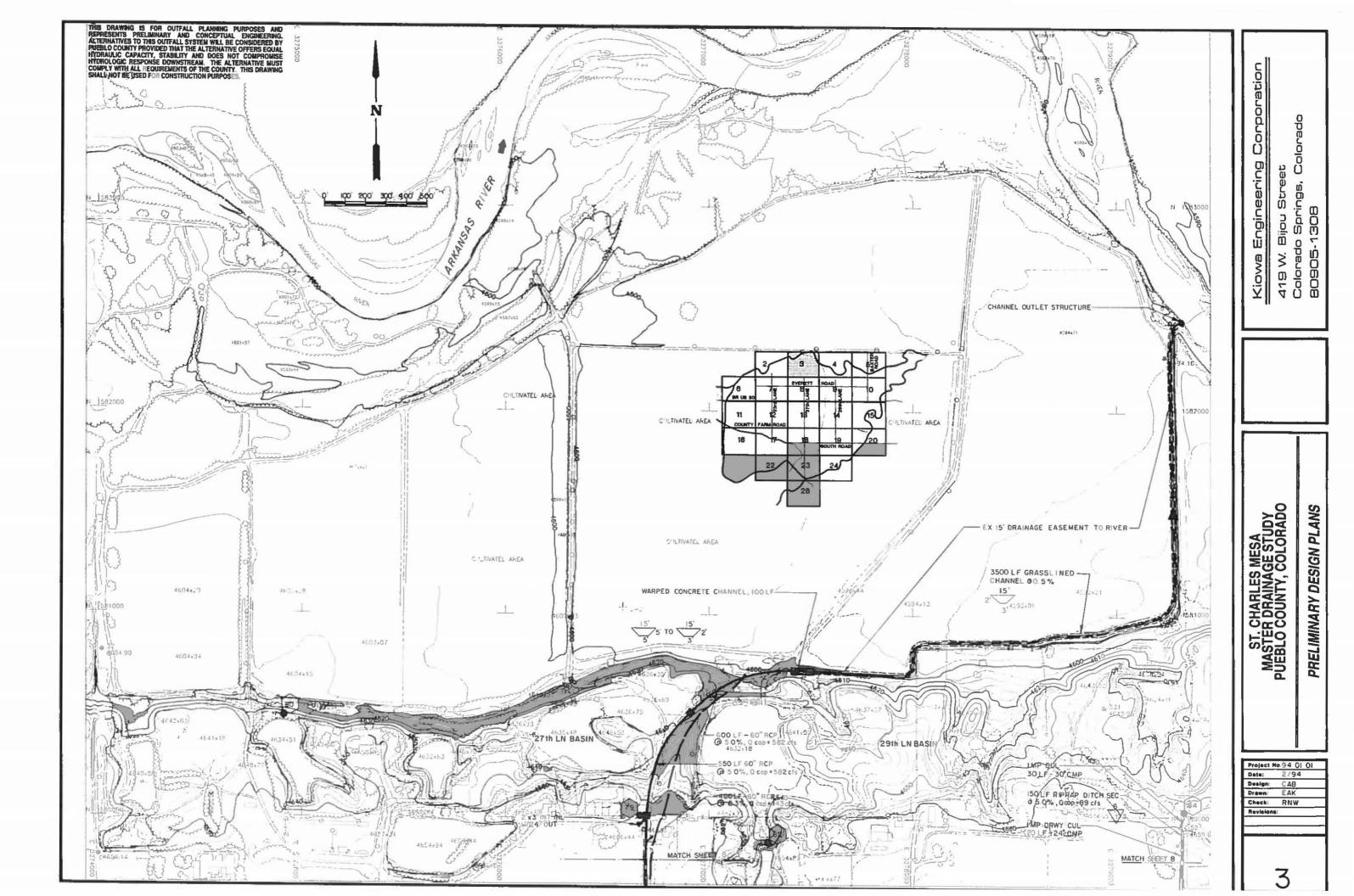
5-YEAR DESIGN: 22 cfs

EXISTING CONDITIONS:

This portion of the 29th Lane Basin contains mainly open spaces. The existing drainage facilities include inadequate roadside ditches and no culverts along 28th Lane. The 28th Lane right-of-way serves as a minor outfall for an area which extends south to Gale Road.

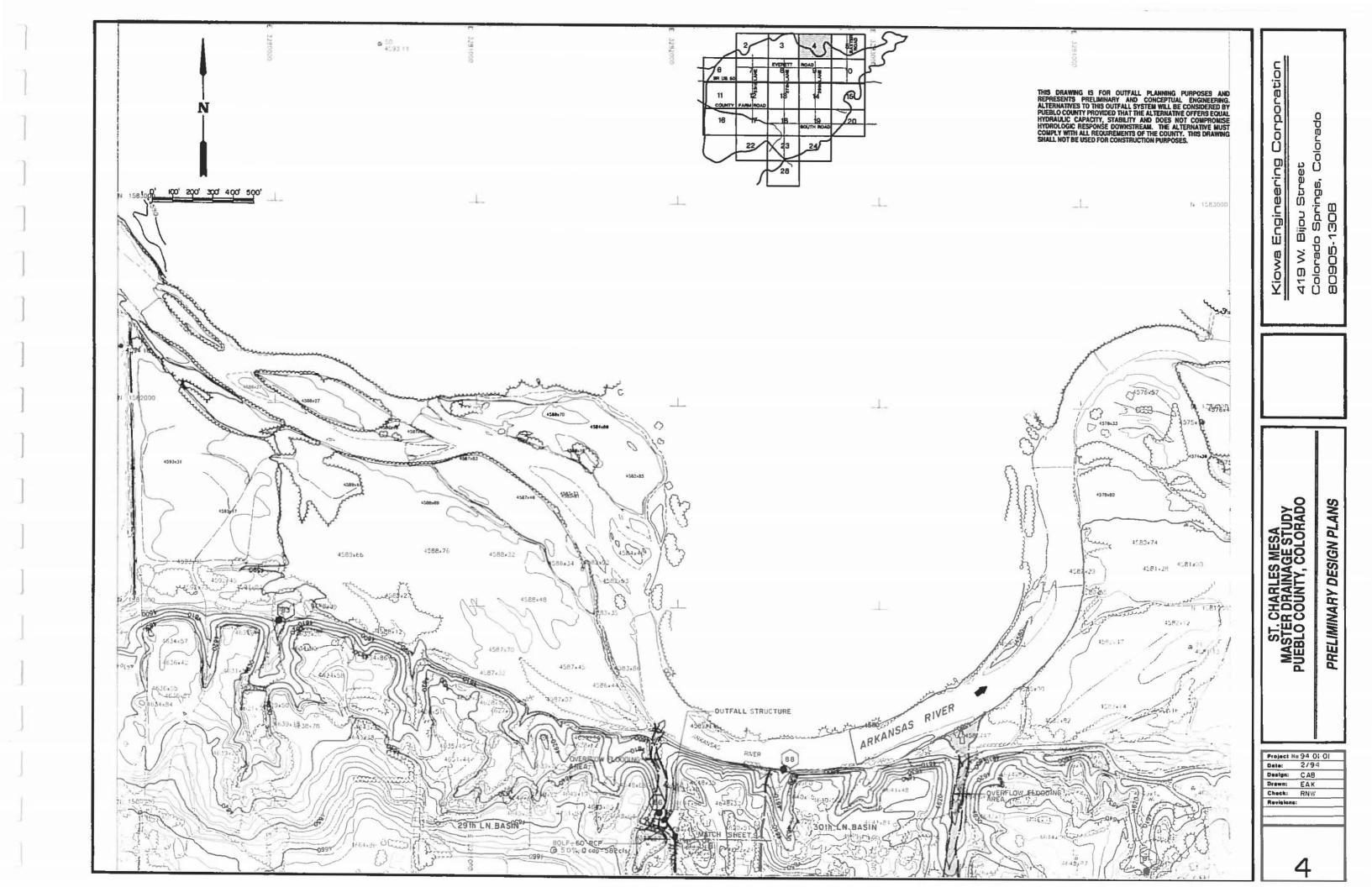
FUTURE CONDITIONS:

Future land use is not anticipated to change.

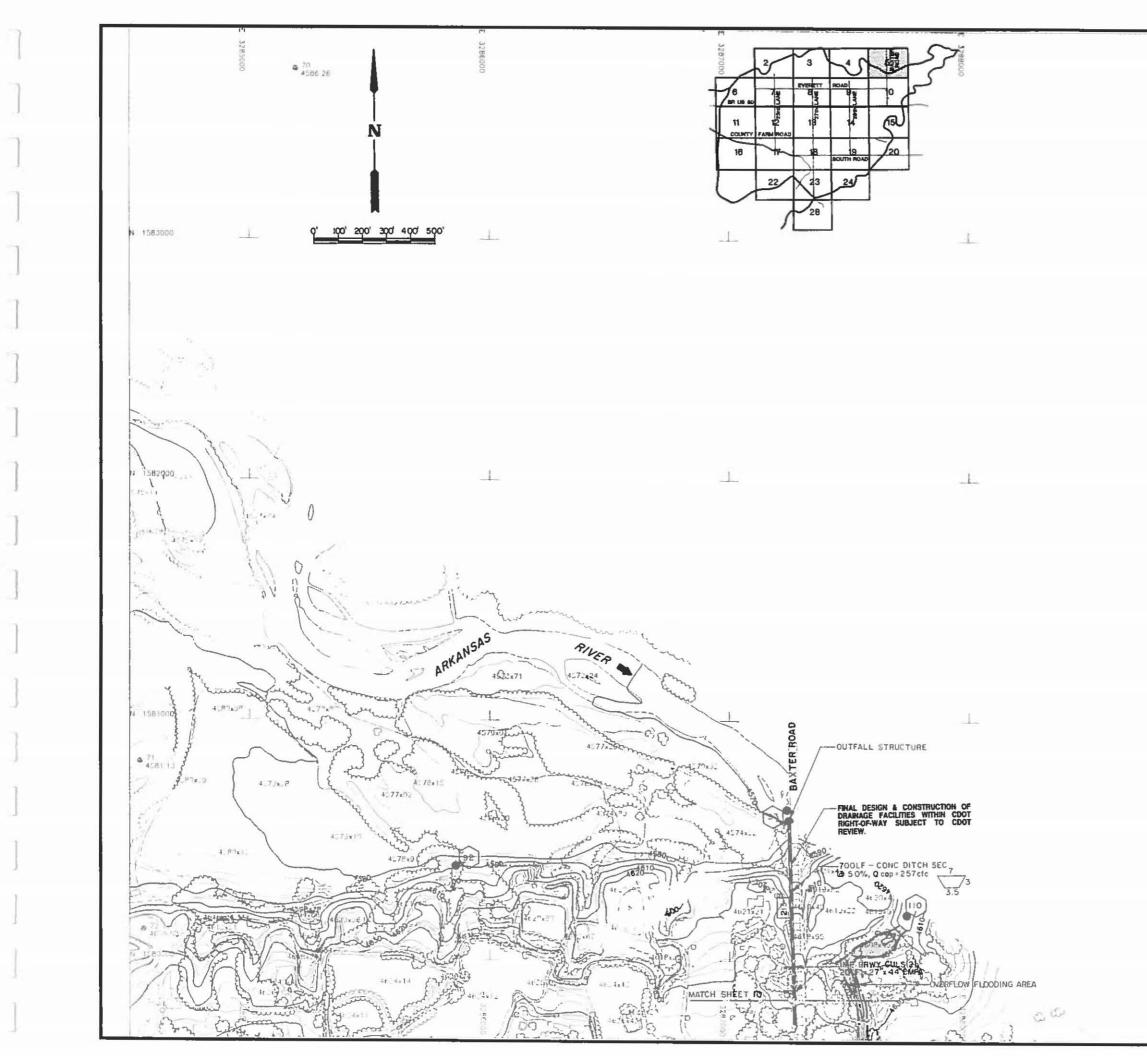

PROPOSED IMPROVEMENTS:

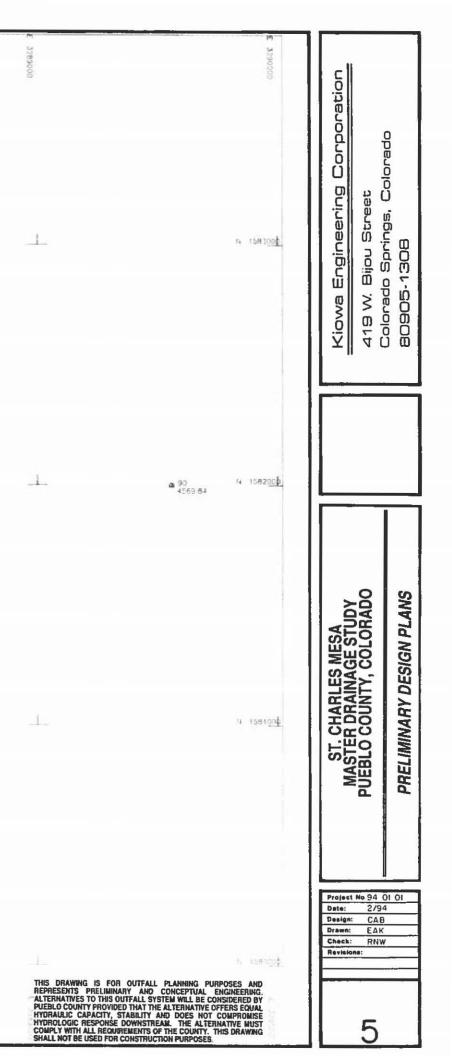
The proposed improvements consist of improving the roadside ditch and installing culverts along 28th Lane.

Preliminary Design Cost Estimate Sheet 3


27th Lanc

Improvement	Quantity	Unit	Unit Cost	Unit Cost	Total	Total	Total
A		1	Material	Installation	Material	Installation	
54" RCP	1150	LF	\$110	\$24	\$126,500	\$27,600	\$154,100
Box Base Manhole	1	EA	\$4,000	\$1,000	\$4,000	\$1,000	\$5,000
Grasslined channel	3500	LF	\$5	\$15	\$17,500	\$52,500	\$70,000
Concrete lined channel	225	LF	\$60	\$60	\$13,500	\$13,500	\$27,000
Channel Transition	1	EA	\$8,000	\$10,000	\$8,000	\$10,000	\$18,000
Outlet Structure	1	EA	\$8,000	\$3,000	\$8,000	\$3,000	\$11,000
Total Estimated Construction	on Cost				\$177,500	\$107,600	\$285,100
Engineering and Contingen					\$35,500	\$21,520	\$57,020
Total Estimated Cost					\$213,000	\$129,120	\$342,120


FLOW PATH: 29th Lane	DRAINAGE BASINS: 29th Lane	29th Lane Basin							
5-YEAR DESIGN: 145 cfs		Improvement	Quantity	Unit	Unit Cost Material	Unit Cost Installation	Total Material	Total Installation	Total
EXISTING CONDITIONS: This portion of the 29th Lane Basin	is mostly open space at the edge of the Mesa. The existing private ditch system which	60" RCP	80	LF		\$24			#11.000
provides an outfall for the area but it is not of s		Box Base Manhole	80 1	EA	\$116 \$4,000	\$24 \$1,000	\$9,280 \$4,000	\$1,920 \$1,000	\$11,200 \$5,000
FUTURE CONDITIONS: Future land use is not anticipated to	change.	Outfall Structure	1	EA	\$25,000	\$10,000	\$25,000	\$10,000	\$35,000
PROPOSED IMPROVEMENTS:		Total Estimated Construct	ion Cost				\$38,280	\$12,920	\$51,200
The proposed improvements consis edge.	it of a storm sewer outfall system in 29th Lane, with an outfall structure at the mesa's	Engineering and Continge	ncy (20%)				\$7,656	\$2,584	\$10,240
		Total Estimated Cost					\$45,936	\$15,504	\$61,440


Preliminary Design Cost Estimate Sheet 4

FLOW PATH: Baxter Road	DRAINAGE BASINS: Baxter Road	Baxter Read Basin							
5-YEAR DESIGN: 142 cfs		Improvement	Quantity	Unit	Unit Cost Material	Unit Cost Installation	Total Material	Total Installation	Total
EXISTING CONDITIONS: This portion of the Baxter Road Ba culverts along Baxter Road. The ditch is insuffi	in contains mostly open spaces. The existing drainage facility is a roadside ditch with cient for upper basin flows.	27" X 44 " CMPA Headwalls	40 2	LF EA	\$70 \$400	\$12 \$400	\$2,800 \$800	\$480 \$800	\$3,280 \$1,600
FUTURE CONDITIONS: Future land use is not anticipated to	change.	Concrete lined channel Outlet Structure	700 1	LF EA	\$50 \$8,000	\$50 \$3,000	\$35,000 \$8,000	\$35,000 \$3,000	\$70,000 \$11,000
PROPOSED IMPROVEMENTS: The proposed improvement is a con Arkansas River.	crete roadside ditch with culverts along Baxter Road and an outfall structure at the	Total Estimated Construction Engineering and Contingen				<u></u>	\$46,600 \$9,320	\$39,280 \$7,856	\$85,880 \$17,176
		Total Estimated Cost					\$55,920	\$47,136	\$103,056

Preliminary Design Cost Estimate Sheet 5

FLOW PATH: Aspen Circle

DRAINAGE BASINS: Roselawn

5-YEAR DESIGN RANGE: 1 to 240 cfs

EXISTING CONDITIONS:

This portion of the Roselawn Basin includes areas of residential, commercial and industrial uses. Aspen Circle drainage characteristics include undersized roadside ditches and culverts. The residential areas contain adequate curbed streets and roadside ditches, but some have inadequate outfall facilities. Additional runoff enters this area from a low spot on Santa Fe Drive which collects runoff from areas south of Santa Fe Drive.

FUTURE CONDITIONS:

Future land use is anticipated to include increased industrial development. Future development shall be required to provide onsite detention to maintain flows to historic levels.

PROPOSED IMPROVEMENTS:

Major improvements occur along Aspen Circle. The southerly portion of Aspen Circle includes ditch and culvert upgrades with a improved outfall to the Arkansas River. The northerly portion of Aspen Circle will be curbed and a storm sewer system will be installed. The improvements to the residential areas include improved ditch sections, improved culverts and small storm sewer systems at various outfall locations. The offsite runoff will be intercepted by a storm sewer system originating in the Liberty Drive area, south of Santa Fe Drive. This system will outfall at the northerly end of Aspen Street.

FLOW PATH: 21st Lane

DRAINAGE BASINS: 21st Lane

5-YEAR DESIGN RANGE: 20 to 131 cfs

EXISTING CONDITIONS:

This portion of the 21st Lane Basin contains primarily residential uses with a small commercial area adjacent to Santa Fe Drive. The existing roadside ditches and culverts are utilized for collection of localized drainage and as an outfall system for drainage generated south of Santa Fe Drive. This existing system is undersized which leads to overtopping and areas of shallow flooding.

FUTURE CONDITIONS:

Future land use is not anticipated to change.

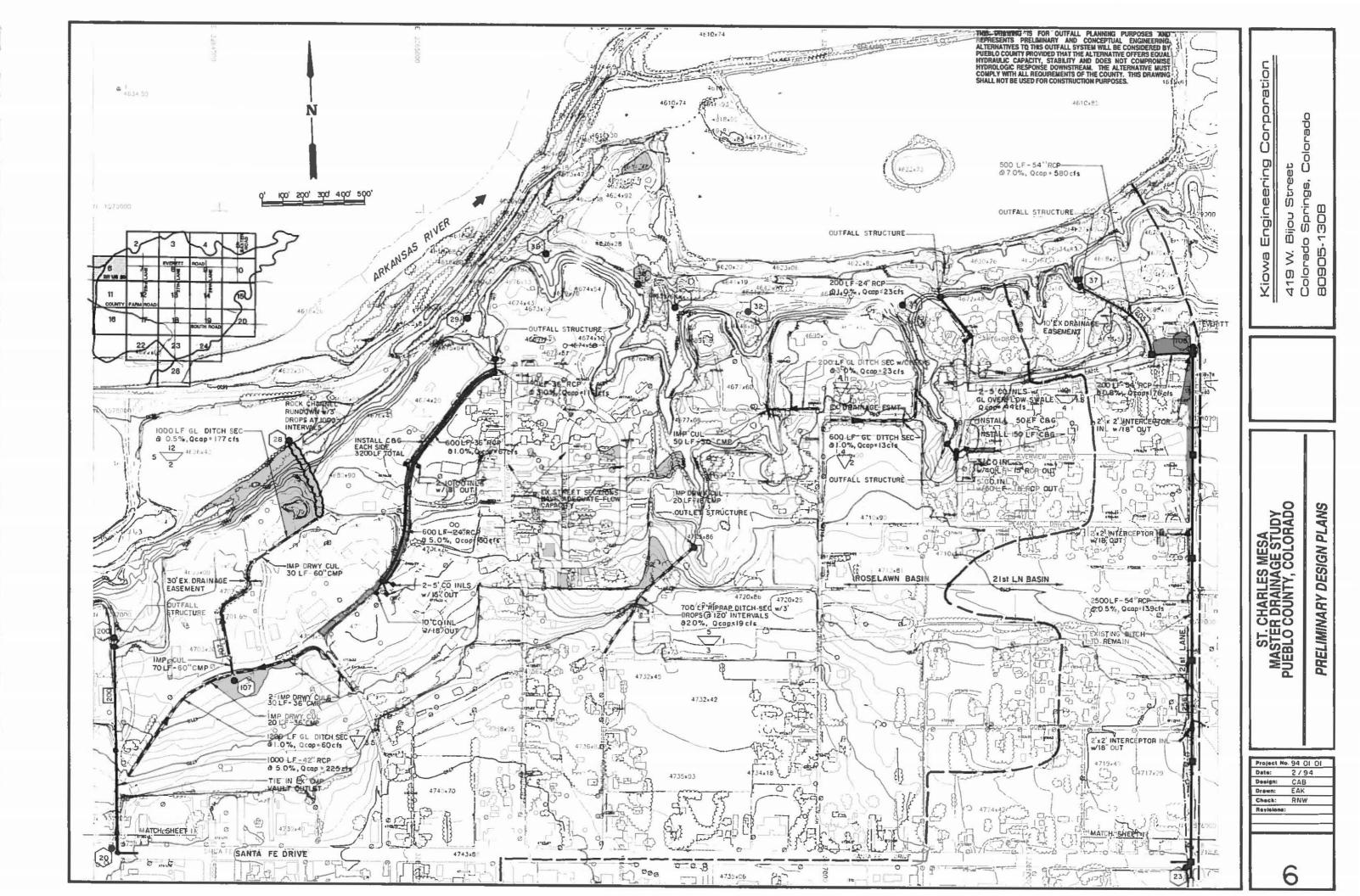
PROPOSED IMPROVEMENTS:

The proposed improvements include utilizing the existing ditches to collect and direct the local drainage and installing an outfall storm sewer system in 21st Lane to convey drainage from upper basin areas. An alternative to the roadside ditch along 21st Lane from Peakview Drive to Clearview Lane would be to install cur and gutter in this area and eliminating the roadside ditches. Peakview Drive, Riverview Drive and Clearview Lane might need regrading to ensure that local drainage reaches the 21st Lane system.

Preliminary Design Cost Estimate Sheet 6

Olas Piece Beatie

Improvement	Quantity	Unit	Unit Cost
			Material
18" CMP	60	LF	\$17
54" RCP	3200	LF	\$71
2' X 2' Grated Inlet	1	EA	\$1,500
Box Base Manhole	6	EA	\$4,000
Pavement Replacement	3250	SY	\$15
Outfall Structure	1	EA	\$25,00


Total Estimated Construction Cost Engineering and Contingency (20%)

Total Estimated Cost

Aspen Street/Reach was Basis

-	ment Quantity		Unit Cost	Unit Cost	Total	Total	Total
•			Material	Installation	Material	Installation	
60" CMP	100	LF	\$70	\$24	\$7,000	\$2,400	\$9,400
42" RCP	1000	LF	\$60	\$15	\$60,000	\$15,000	\$75,000
36" RCP	640	LF	\$46	\$10	\$29,440	\$6,400	\$35,840
36" CMP	80	LF	\$35	\$10	\$2,800	\$800	\$3,600
30°CMP	50	LF	\$29	\$10	\$1,450	\$500	\$1,950
24" RCP	800	LF	\$35	\$6	\$28,000	\$4,800	\$32,800
18" RCP	110	LF	\$20	\$6	\$2,200	\$660	\$2,860
15" RCP	80	LF	\$18	\$6	\$1,440	\$480	\$1,920
Manholo	4	EA	\$2,000	\$500	\$8,000	\$2,000	\$10,000
5' CO inlet	6	EA	\$2,500	\$800	\$15,000	\$4,800	\$19,800
10° CO Inlet	3	EA	\$3,000	\$1,000	\$9,000	\$3,000	\$12,000
Grasslined channel	1000	LF	\$5	\$15	\$5,000	\$15,000	\$20,000
Grasslined channel	800	LF	\$5	\$15	\$4,000	\$12,000	\$16,000
Grasslined channel	1200	LF	\$5	\$15	\$6,000	\$18,000	\$24,000
Riprep channel	700	LF	\$5	\$10	\$3,500	\$7,000	\$10,500
Curb and gutter	3400	LF	\$5	\$2	\$17,000	\$6,800	\$23,80
Paving	5800	SY	\$4	54	\$23,200	\$23,200	\$46,400
Rock channel randown	1	EA	\$10,000	\$5,000	\$10,000	\$5,000	\$15,000
Headwalls	3	EA	\$400	\$400	\$1,200	\$1,200	\$2,400
Drop Structures	7	EA	\$6,000	\$4,000	\$42,000	\$28,000	\$70,00
Overflow swale	200	LF	\$5	\$10	\$1,000	\$2,000	\$3,000
		EA	\$25,000	\$10,000	\$100,000		

Unit Cost Installation	Total Material	Total Installation	Total	
mananan	Material	Installation		
\$6	\$1,020	\$360	\$1,380	
\$24	\$249,600	\$76,800	\$326,400	
\$500	\$1,500	\$500	\$2,000	
\$1,000	\$24,000	\$6,000	\$30,000	
\$5	\$48,750	\$16,250	\$65,000	
\$10,000	\$25,000	\$10,000	\$35,000	
	\$349,870	\$109,910	\$459,780	
	\$69,974	\$21,982	\$91,956	
	\$419,844	\$131,892	\$551,736	

FLOW PATH: 23rd Lane

DRAINAGE BASINS: 23rd Lane

5-YEAR DESIGN: 18 to 119 cfs

EXISTING CONDITIONS:

This portion of the 23rd Lane Basin includes residential and agricultural areas. The existing drainage facilities include roadside ditches with culverts. The facilities along Gale and Everett Roads are inadequate and need to be improved. The existing ditch and culverts adjacent to 23rd Lane are utilized for collection of localized drainage and as an outfall system for drainage generated south of Santa Fe Drive. This existing system is undersized which leads to ditch overtopping and areas of shallow flooding along 23rd Lanc.

FUTURE CONDITIONS:

Future land use is anticipated to include increased residential use. Onsite detention shall be required to maintain historic levels.

PROPOSED IMPROVEMENTS:

Improved ditches and culverts are proposed along Gale and Everett Roads. A small storm sewer collector system is proposed in Everett Road east of 23rd Lane to drain a localized low area along the road right-of-way. The proposed improvements along 23rd Lane consist of installing a storm sewer outfall system to convey upper basin flows and intercept local flows at major intersections. The existing roadside ditch along 23rd Lane between Santa Fe Drive and Everett Road will remain to provide a collection system for local and street drainage. At the time of any development the ditch should be eliminated and curb and gutter installed along 23rd Lane. The future development shall maintain runoff to historic conditions and shall provide a connection to the proposed outfall facility. The existing ditch and culverts from Everett Road north shall be eliminated and curb and gutter installed along 23rd Lane. Intersecting roads from the west may require regrading to ensure that local drainage reaches 23rd Lane.

FLOW PATH: 25th Lane

DRAINAGE BASINS: 25th Lane

5-YEAR DESIGN: 128 to 186 cfs

EXISTING CONDITIONS:

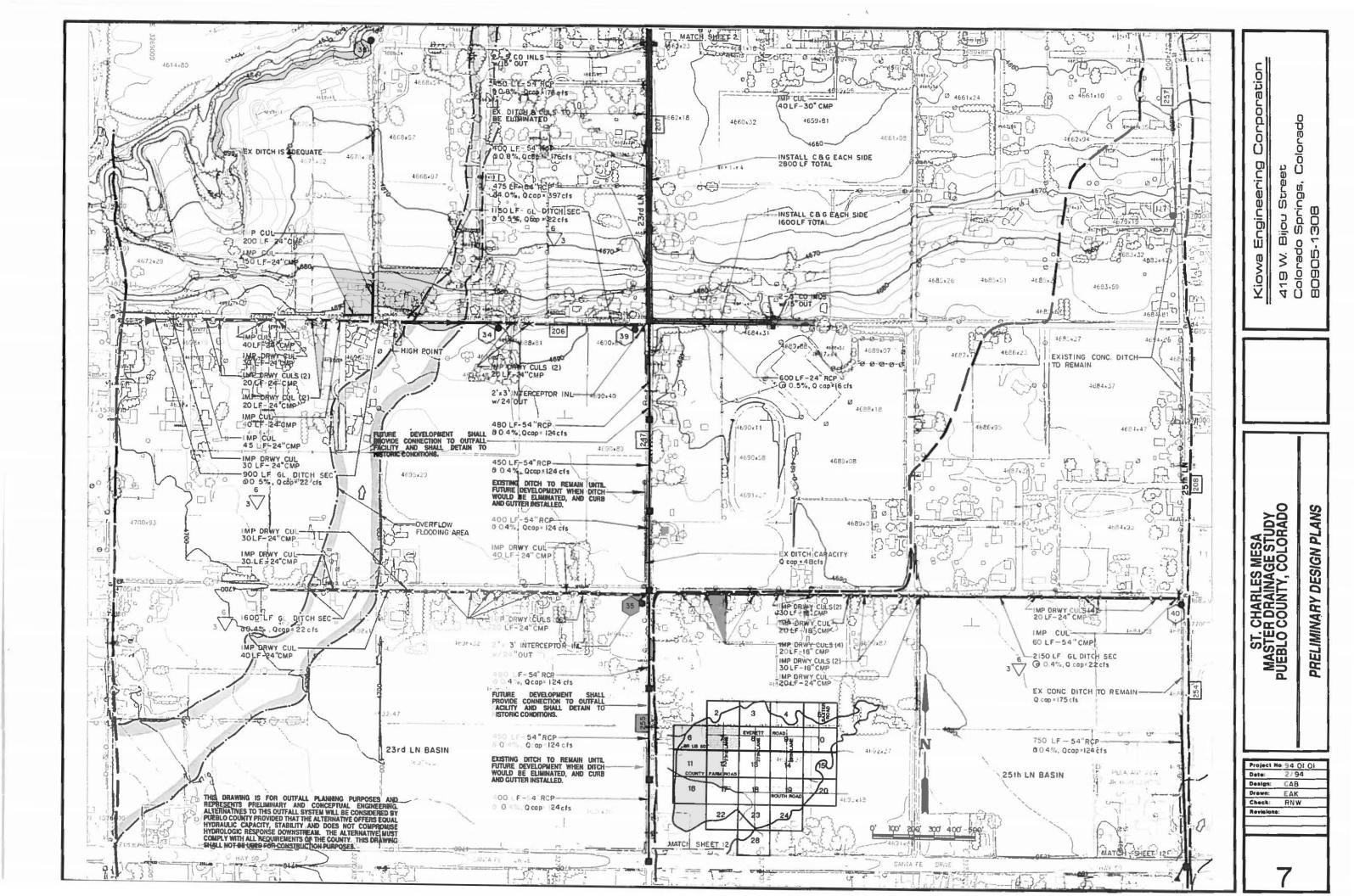
This portion of the 25th Lane Basin includes residential and agricultural areas. The existing drainage facilities include roadside ditches and culverts. The roadside ditch along Gale Road are insufficient and most of the culverts are less than the minimum length. The existing concrete ditch along 25th Lane intercepts local drainage and also provides the outfall system for drainage generated south of Santa Fe Drive. The existing ditch is adequate for these uses. The outfall system south of Santa Fe Drive is inadequate.

FUTURE CONDITIONS:

Future land use is anticipated to include commercial areas adjacent to Santa Fe Drive.

PROPOSED IMPROVEMENTS:

The roadside ditch system adjacent to Gale Road will be upgraded. The proposed improvements along 25th Lane consist of improving the storm sewer outfall system which conveys upper basin flows into the existing concrete channel.


Preliminary Design Cost Estimate Sheet 7

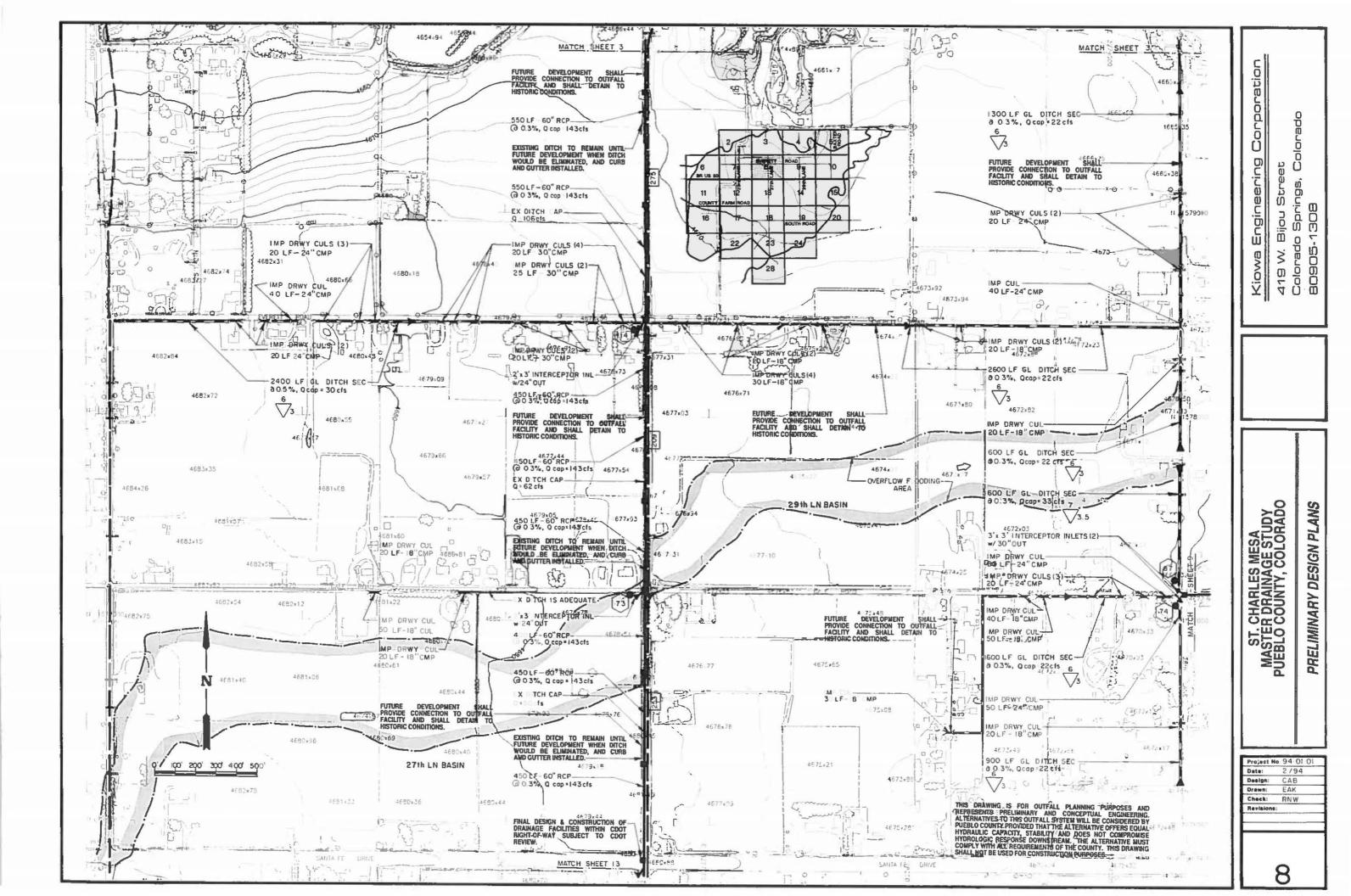
25th Lane Basin

Improvement	Quantity	Unit	Unit Cost Material	Unit Cost Installation	Total Material	Total Installation	Total
18" CMP	220	LF	\$17	\$6	\$3,740	\$1,320	\$5,060
24" CMP	750	LF	\$22	\$6	\$16,500	\$4,500	\$21,000
54" RCP	750	LF	\$78	\$24	\$58,500	\$18,000	\$76,500
54" CMP	750	LF	\$60	\$24	\$45,000	\$18,000	\$63,000
Grasslined channels	2150	LP	\$5	\$15	\$10,750	\$32,250	\$43,000
Headwall	15	EA	\$400	\$400	\$6,000	\$6,000	\$12,000
Total Estimated Construction	Cost				\$140,490	\$80,070	\$220,560
Engineering and Contingency	y (20%)				\$28,098	\$16,014	\$44,112
Total Estimated Cost					\$168,588	\$96,084	\$264,672

23rd Lane Basin

Improvement	Quantity	Unit	Unit Cost Material	Unit Cost Installation	Total Material	Total Installation	Total
30" CMP	40	LF	\$29	\$10	\$1,160	\$400	\$1,560
54" RCP	3985	LF	\$78	\$24	\$310,830	\$95,640	\$406,470
24" RCP	600	LF	\$25	\$6	\$15,000	\$3,600	\$18,600
15" CMP	80	LF	\$15	\$6	\$1,200	\$480	\$1,680
24" CMP	915	LF	\$22	\$6	\$20,130	\$5,490	\$25,620
Box base manhole	9	EA	\$4,000	\$1,000	\$36,000	\$9,000	\$45,000
5'manhole	1	EA	\$2,000	\$500	\$2,000	\$500	\$2,500
2'x3' Intercepting inlet	2	EA	\$1,400	\$500	\$2,800	\$1,000	\$3,800
5' CO Inlet	4	EA	\$2,500	\$800	\$10,000	\$3,200	\$13,200
Curb and Gutter	4400	LF	\$4	\$2	\$17,600	\$8,800	\$26,400
Grasslined channel	3650	LF	\$5	\$15	\$18,250	\$54,750	\$73,000
Pavement Replacement	5340	SY	\$15	\$5	\$80,100	\$26,700	\$106,800
Headwalls	23	EA	\$400	\$400	\$9,200	\$9,200	\$18,400
Total Estimated Construction	Cost				\$524,270	\$218,760	\$743,030
Engineering and Contingency	y (20%)				\$104,854	\$43,752	\$148,606
Total Estimated Cost					\$629,124	\$262,512	\$891,636

· · · · · · · · · · · · · · · · · · ·		27th Laure Basin		
FLOW PATH: 27th Lane	DRAINAGE BASINS: 27th Lane	Improvement	Quantity	Unit
5-YEAR DESIGN: 112 to 136 cfs				
		60" RCP	3750	LF
EXISTING CONDITIONS:		45" x 73" RCP	70	LF
	a contains mostly agricultural areas with some smaller residential areas. The existing	30" CMP	170	LF
	Iside ditches with culverts. The culvert at Santa Fe Drive and the ditch along 27th Lane	24" CMP	180	LF
	ed south of Santa Fe Drive. The ditch also collects local runoff, but the ditch is of	18" CMP	90	LF
nsurncient capacity. Everett Koad also has an i	nsufficient ditch with culverts which do not meet the minimum length requirements.	Box Base Manhole	9	EA
FUTURE CONDITIONS:			e.	LF
	lude increased residential uses. Onsite detention shall be required to maintain historic	Grasslined channel	2400	1755.00 V 1997
icvels.	nuce increased residential uses. Onside detention shall be required to maintain initione	2' X 3' Intercepting Inlet	2	EA
54 T 648+		Headwalls	18	EA
PROPOSED IMPROVEMENTS:				
The proposed improvements consist	of installing a storm sewer outfall system in 27th Lane to convey upper basin flows to			
he Arkansas River. The existing roadside dit	ch along 27th Lane from Santa Fe Drive north will remain to collect street and local	Total Estimated Construction	n Cost	
runoff. At the time of future development, the	ditch can be eliminated and curb and gutter installed along 27th Lane. Local drainage	Engineering and Contingenc	y (20%)	
will be intercepted at Gale and Everett Roads.	The ditches and culverts along Gale and Everett Roads will be upgraded.			
yester.		Total Estimated Cost		
FLOW PATH: 29th Lanc	DRAINAGE BASINS: 29th Lane	29th Lane Basin	1 <u></u>	
5-YEAR DESIGN: 45 to 77 cfs		T	Overtite	11_:
		Improvement	Quantity	Uni
EXISTING CONDITIONS:				
	n contains mainly agricultural uses with smaller areas of residential use. The existing	30" CMP	40	LF
	ditches and culverts and some areas have insufficient outfall facilities due to the very	24" CMP	250	L
flat topography in this area of the Mesa.		18" CMP	360	L
FUTURE CONDITIONS:		Box Base Manhole	1	E
FUT UKE CONDITIONS: Future land use is anticipated to incl	nde increased wridential nee	Grasslined channel	7600	L
Future band use is anticipated to me	nan tirerasan instructural nag.			
PROPOSED IMPROVEMENTS:		3' X 3' Intercepting Inlet	2	E.
	t of improving the roadside ditches and culverts along 28th Lane and Everett Road and	Headwalls	21	E
	m will outfall to 29th Lane and then continue northerly. The Gale Road system will be			
collected by a storm sewer system at 29th Land				
concernence of a contract of a plant of a plant ball		Total Retirested Construction	- C	


Total Estimated Construction Cost Engineering and Contingency (20%)

Preliminary Design Cost Estimate Sheet 8

Total Estimated Cost

Unit Cost Material	Unit Cost Installation	Total Material	Total Installation	Total
\$116	\$24	\$435,000	\$90,000	\$525,000
\$90	\$24	\$6,300	\$1,680	\$7,980
\$29	\$10	\$4,930	\$1,700	\$6,630
\$22	\$6	\$3,960	\$1,080	\$5,040
\$17	\$6	\$1,530	\$540	\$2,070
\$4,000	\$1,000	\$36,000	\$9,000	\$45,000
\$5	\$15	\$12,000	\$36,000	\$48,000
\$1,400	\$500	\$2,800	\$1,000	\$3,800
\$400	\$400	\$7,200	\$7,200	\$14,400
		\$509,720	\$148,200	\$657,920
		\$101,944	\$29,640	\$131,584
		\$611,664	\$177,840	\$789,504

Unit Cost	Unit Cost	Total	Total	Total
Material	Installation	Material	Installation	
\$29	\$10	\$1,160	\$400	\$1,560
\$22	\$6	\$5,500	\$1,500	\$7,000
\$17	\$6	\$6,120	\$2,160	\$8,280
\$4,000	\$1,000	\$4,000	\$1,000	\$5,000
\$5	\$15	\$38,000	\$114,000	\$152,000
\$1,500	\$500	\$3,000	\$1,000	\$4,000
\$400	\$400	\$8,400	\$8,400	\$16,800
		\$66,180	\$128,460	\$194,640
		\$13,236	\$25,692	\$38,928
		\$79,416	\$154,152	\$233,568

		with Line Dent	Ard Hose Carla Kull Hore						
FLOW PATH: 29th Lane	DRAINAGE BASINS: 29th Lane	Improvement	Quantity	Unit	Unit Cost	Unit Cost	Total	Total	Total
5-YEAR DESIGN: 100 to 142 cfs					Material	Installation	Material	Installation	
3 2 <u>192</u> 2		48" RCP	1550	LF	\$68	\$18	\$105,400	\$27,900	\$133.3
EXISTING CONDITIONS:		42" RCP	1300	LF	\$60	\$15	\$78,000	\$19,500	\$97,5
This portion of the 29th Lane Basin	contains residential and agricultural areas. Portions of this area contain inadequate	30" CMP	40	LF	\$29	\$10	\$1,160	\$400	\$1.
oadside ditches and other parts have no facilities	s at all. There are no ditches along 29th Lane and there are power poles located along	24* CMP	375	LF	\$22	\$6	\$8,250	\$2,250	\$10
he westerly edge.		18" CMP	160	LF	\$17	\$6	\$2,720	\$960	\$3,
FUTURE CONDITIONS:		Box Base Manhole	4	EA	\$4,000	\$1,000	\$16,000	\$4,000	\$20,
	ude increased residential use. Onsite detention shall be required to maintain runoff to	Manhole	2	EA	\$2,000	\$500	\$4,000	\$1,000	\$5,
historic levels.		4' x 3' Intercepting Inlet	1	EA	\$2,500	\$800	\$2,500	\$800	\$3
		3' x 3' Intercepting Inlet	2	EA	\$1,500	\$500	\$3,000	\$1,000	\$4
PROPOSED IMPROVEMENTS:		2' x 3' Intercepting Inlet	1	EA	\$1,400	\$500	\$1,400	\$500	\$
and the state of t	of a storm sewer outfall system to serve areas south of Santa Fe Drive. Local drainage	Outfall Structure	1	EA	\$25,000	\$10,000	\$25,000	\$10,000	\$3
	itches and in sump areas. Any future development shall provide a suitable connection	Grasslined channel	4800	LF	\$5	\$15	\$24,000	\$72,000	\$9
	oric conditions. A lateral system will extend west in Gale Road to provide an outfall and culverts will be improved along the eastern portion of Everett Road and will be	Headwalls	23	EA	\$400	\$400	\$9,200	\$9,200	\$1
intercepted at 29th Lane by the outfall system.			an anta ana manana sarasa						
		Total Estimated Construction	Cort				\$280,630	\$149,510	\$430
FLOW PATH: 30th Lane	DRAINAGE BASINS: 30th Lane	Engineering and Contingency	(20%)				\$56,126	\$29,902	\$80
-YEAR DESIGN: 26 to 63 cft		Total Estimated Cost					\$336,756	\$179,412	\$51
		LOLAI BRUMADE CON					4330,130	<i>4119</i> ,412	4010
EXISTING CONDITIONS:		29th Lane Betin							
	n contains residential and agricultural uses. The existing drainage facilities include								
tim bounds of the hour rane past	in containts restorming and agricultural uses. The evidents maningle racinities include								

This portion of the 30th Lane Basin contains residential and agricultural uses. The existing drainage facilities in insufficient roadside ditches with culverts.

FUTURE CONDITIONS:

Future land use is anticipated to include increased residential use. Onsite detention shall be required to maintain historic levels.

PROPOSED IMPROVEMENTS:

The proposed improvements consist of improving the insufficient ditches and culverts in Gale and Everett Roads. A storm sewer is proposed along 30th Lane and a portion of Everett Road to convey runoff collected by the improved ditches to outfall at a natural ravine north of Everett Road. The storm sewer will be located in the ditch line area so that runoff from the low areas below the roads can be intercepted.

> Total Estimated Construction Cost Engineering and Contingency (20%)

Improvement

60° RCP

54" RCP

48" RCP

24° CMP

18" CMP

Type D Inlet

Head walls

Box Base Mnahole

Grasslined channel

2' x 2' Intercepting Inlet

2' x 3' Intercepting Inlet

Unit

LF

LF

LF

LF

LF

EA

EA

EA

EA

LF

EA

Quantity

2695

1320

2600

120

14

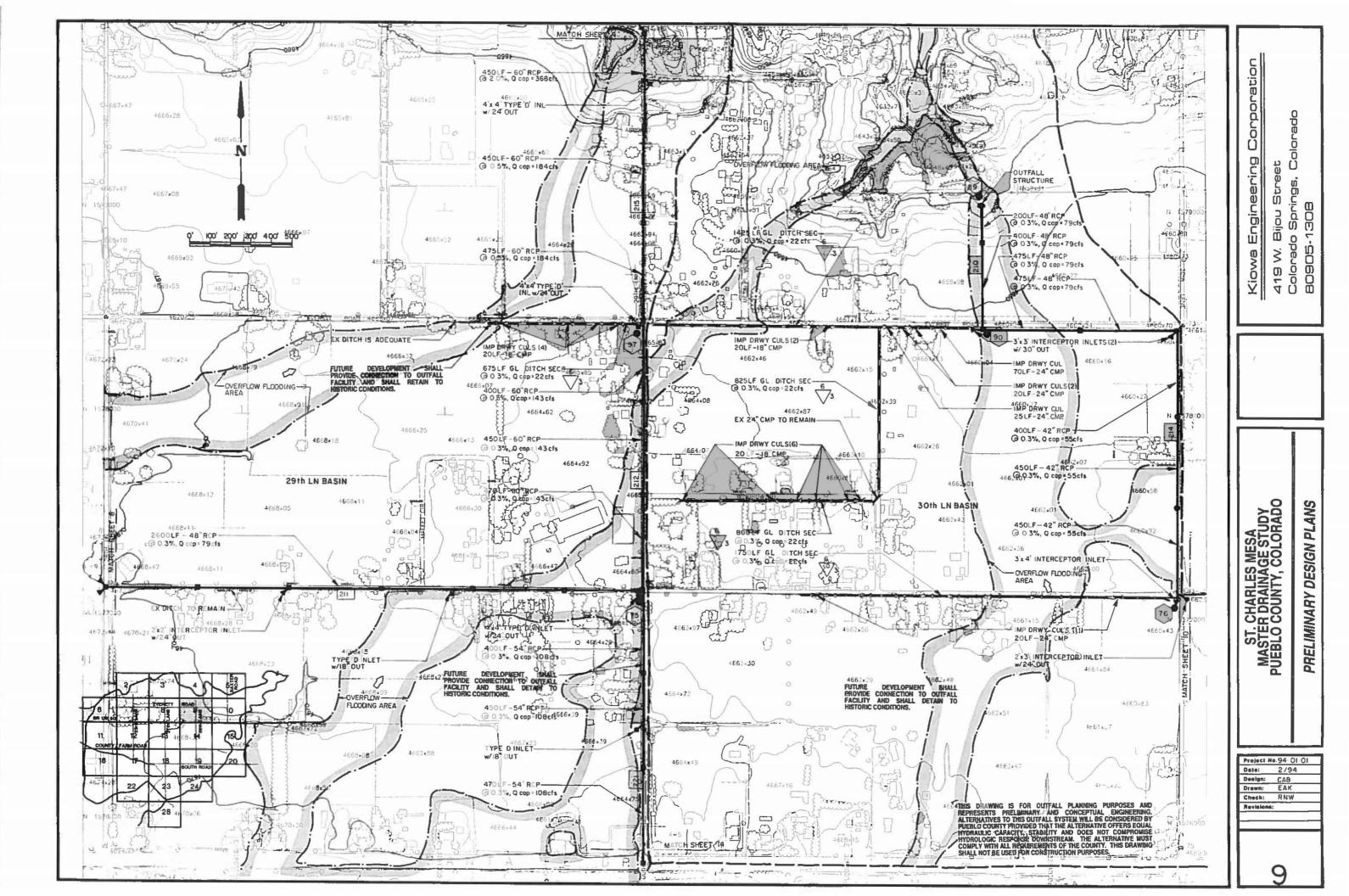
1

3

2

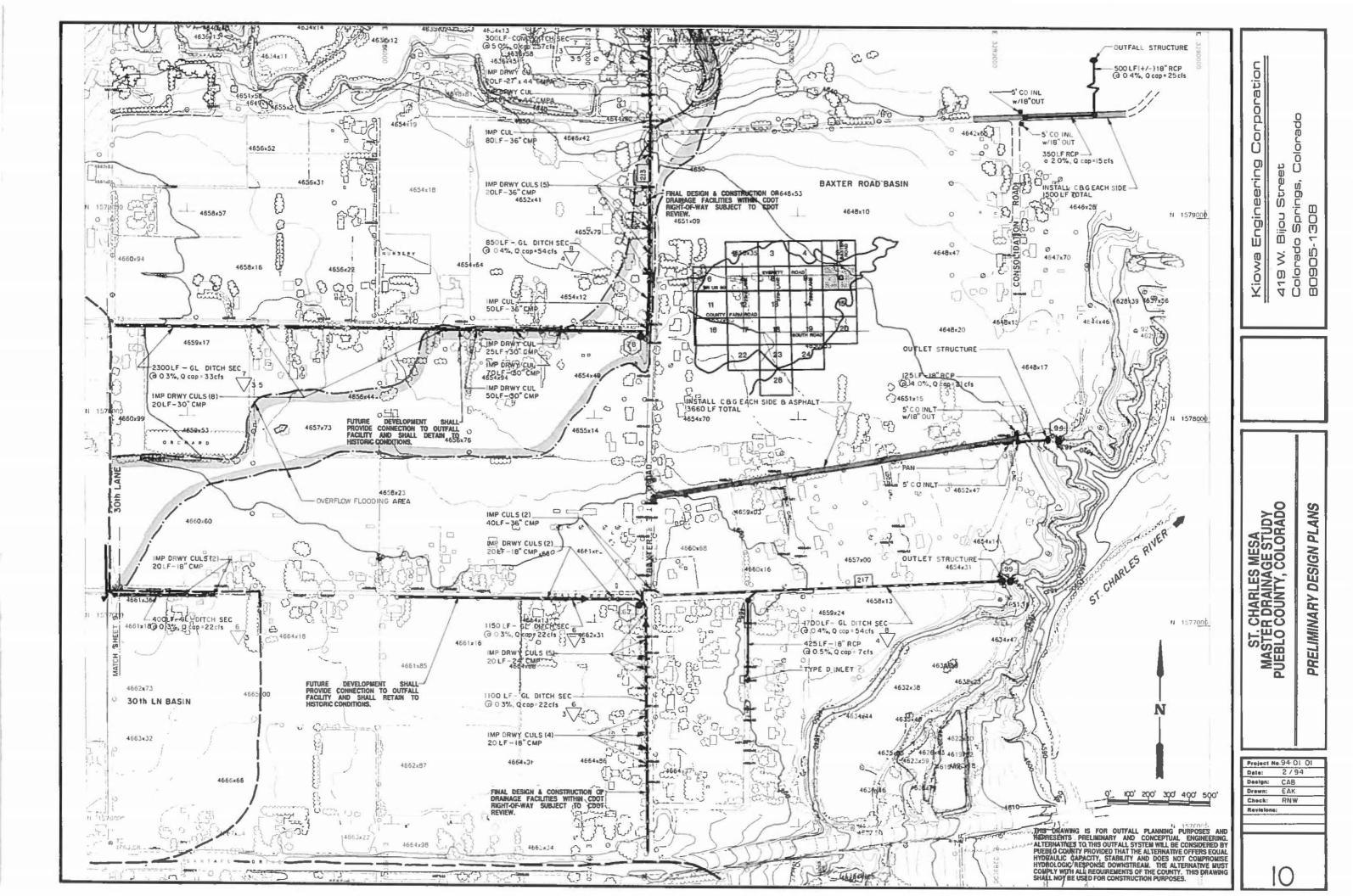
4

675


80

Preliminary Design Cost Estimate Sheet 9

Sthis Lana Basin


Total Estimated Cost

Unit Cost	Unit Cost	Total	Total	Total
Material	Installation	Material	Installation	
\$116	\$24	\$312,620	\$64,680	\$377,300
\$78	\$24	\$102,960	\$31,680	\$134,640
\$68	\$15	\$176,800	\$39,000	\$215,800
\$22	\$6	\$1,760	\$480	\$2,240
\$17	\$6	\$2,040	\$720	\$2,760
\$4,000	\$1,000	\$56,000	\$14,000	\$70,000
\$1,200	\$500	\$1,200	\$500	\$1,700
\$1,400	\$500	\$4,200	\$1,500	\$5,700
\$1,500	\$500	\$3,000	\$1,000	\$4,000
\$5	\$15	\$3,375	\$10,125	\$13,500
\$400	\$400	\$1,600	\$1,600	\$3,200
		\$665,555	\$165,285	\$830,840
		\$133,111	\$33,057	\$166,168
		\$798,666	\$198,342	\$997,008

Preliminary Design Cost Estimate Sheet 10

	30th Lane Basin							
LOW PATH: 30th Lane DRAINAGE BASINS: 30th Lane	Improvement	Quantity	Unit	Unit Cost	Unit Cost	Total	Total	Total
				Material	Installation	Material	Installation	
KISTING CONDITIONS:	18" CMP	40	LF	\$17	\$6	\$680	\$240	\$9
This portion of the 30th Lane Basin contains residential and agricultural areas. This area contains inadequate roadside	Grasslined channel	400	LF	\$5	\$15	\$2,000	\$6,000	\$8,0
tches and culverts along Gale Road. There is no outlet facility at the intersection of Gale Road and 30th Lane.	Headwalls	2	EA	\$400	\$400	\$800	\$800	\$1,6
UTURE CONDITIONS:								
Future land use is not anticipated to change.	Total Estimated Constructi	an Cost				\$3,480	\$7,040	\$10,
ROPOSED IMPROVEMENTS:	Engineering and Continger					\$696	\$1,408	\$2,
The proposed improvement is an upgraded ditch section with improved culverts along Gale Road. The ditch will be attracted by a storm sewer outfall system in 30th Lane.	Total Estimated Cost					\$4,176	\$8,448	\$12,
LOW PATH: Baxter Road DRAINAGE BASINS: Baxter Road	Bester Read Basin							
VEAD DEPENDING AS AN 142 ST	Improvement	Quantity	Unit	Unit Cost	Unit Cost	Total	Total	Total
-YEAR DESIGN: 45 to 142 cfs			· · · ·	Material	Installation	Material	Installation	
XISTING CONDITIONS:	36" CMP	310	LF	\$46	\$10	\$14,260	\$3,100	\$17
This portion of the Baxter Road Basin contains residential and agricultural uses. The existing drainage facilities include	30" CMP	305	LF	\$29	\$10	\$8,845	\$3,050	\$11
padside ditches with culverts, and streets with curb and gutter.	27" x 44" CMPA	60	LF	\$55	\$10	\$3,300	\$720	\$4
The ditches along Baxter Road near Gale and Everett Roads are inadequate, along with those along Everett and Gale	24" CMP	100	LF	\$22	\$6	\$2,200	\$600	\$2
Roads.	18" RCP	1470	LF	\$20	\$6	\$29,400	\$8,820	\$38
	18" CMP	120	LF	\$17	\$6	\$2,040	\$720	\$2
FUTURE CONDITIONS: Future land use is anticipated to include increased residential use. Onsite detention shall be required to maintain runoff at	5' CO inlet	110	EA	\$2,500	\$800	\$10,000	\$3,200	\$13
runte tata use is antripated to include increased residential use. Onsite detention shall be required to maintain runon at istoric levels.	Type D inlet		EA	\$2,500	\$800 \$800	\$2,500	\$3,200	\$13
	5' Manbole	3	EA	\$2,000	\$500	\$6,000	\$1,500	\$7
ROPOSED IMPROVEMENTS:		180	SF	\$2,000 \$8	\$300	\$1,440	\$1,500	\$1
The proposed improvements consist of improving the insufficient ditches and culverts in Baxter, Gale and Everett Roads.	Cross-pan Grasslined channel	2250	LF	30 \$5	\$15	\$11,250	\$33,750	\$45
Surb, gutter, pavement and drainage facilities are proposed along Ford Road east of Baxter Road to convey runoff.	Grasslined channel	2300	LF	\$5	\$15	\$11,500	\$33,750	
	Grasslined channel	2550	LF	15 55	\$15	\$12,750	\$38,250	\$51
A local storm sewer with inlets is proposed at the intersection of Daniels Road and Consolidation Drive. This system will	Concrete channel	300	LF	\$50	\$50	\$15,000	\$15,000	\$30
atfall to the Arkansas River. A drainage easement may be needed between Daniels Road and the outfall point at the River.	Headwalls	33	EA	\$400	\$400	\$13,200	\$13,200	52 52
								\$5
	99 73 50							
								\$2 \$10
	Paving Curb and gutter Outfall structures		510 110 3	110 LF	110 LF \$ 4	110 LF \$4 \$2	110 LF \$4 \$2 \$17,640	110 LF \$4 \$2 \$17,640 \$8,820
	Total Estimated Construct	ion Cost					\$262,365	\$262,365 \$222,430
	Engineering and Continge	ncy (20%)				\$52,473	\$44,486	
	Total Estimated Cost					\$314,838	\$266,916	S

		216 Cane Basis			
FLOW PATH: Aspen Circle	DRAINAGE BASINS: Rosclawn	Improvement	Quantity	Unit	Unit Cost Material
5-YEAR DESIGN: 31 cfs					
		31" X 51" CMPA	100	LF	\$
		42" RCP	1340	LF	\$
EXISTING CONDITIONS:		36" RCP	1300	LF	\$
	includes the Roselawn Cemetery and smaller areas of residential and commercial use	30" RCP	100	LF	\$
	cteristics include shallow sheet flow through the Cemetery and into the existing curbed	30" CMP	270	LF	\$
streets. The drainage concentrates in a low spot		24" CMP	60	LF	5
		24" RCP	500	LF	\$
FUTURE CONDITIONS:		18" CMP	70	LF	5
Future land use is anticipated to inc	lude increased residential development. Future development shall be required to provide	Box Base Manhole	1	EA	\$4,0
onsite detention to maintain flows to historic le	vels.	Manbole	5	EA	\$2.0
		4' x 4' Intercepting Inlet	1	EA	\$2,5
PROPOSED IMPROVEMENTS:		3' x 3' Intercepting Inlet	2	EA	\$1,5
A storm sewer system of piping an	id inlets is proposed within the curbed areas to control runoff in this area. The system	2.5' x 3' Intercepting Inlet	1	EA	\$1,5
will intercept a portion of the flow before it re	aches the low spot in Santa Fe Drive and will provide collection points at the low spot.	10' CO Inlet	3	EA	\$3,0
The storm sewer begins at the intersection of	Liberty Drive and Delta Street, continues into Santa Fe Drive (State Highway right-of-	Pavement Replacement	3600	SY	
way), and heads northerly in Aspen Circle.		Grasslined channel	4525	LF	
		Grasslined channel	2650	LF	
The Bessemer Ditch stormwater set	paration structure is proposed west of the Aspen Street intersection with the Ditch. This	Classifier contact	2000		

The Bessemer Ditch stomwater separation structure is proposed west of the Aspen Street intersection with the Ditch. This structure will reduce the flow in the Bessemer Ditch which enters the St. Charles Mesa basin to the maximum irrigation flow. Details of this structure are presented on Sheet 30 of the design plans.

FLOW PATH: 21st Lane

-

DRAINAGE BASINS: 21st Lane

5-YEAR DESIGN RANGE: 20 to 131 cfs

EXISTING CONDITIONS:

This portion of the 21st Lane Basin contains residential and agricultural uses. The existing drainage facilities include areas of curbed streets, and roadside ditches with culverts. The roadside ditches and culverts along 20th and 21st Lanes are undersized which leads to ditch overtopping and areas of flooding. The existing culvert under Santa Fe Drive (State Highway right-of-way) is also undersized and contributes to ditch overtopping.

FUTURE CONDITIONS:

Future land use is anticipated to include increased residential use. Onsite detention shall be required to maintain runoff to historic conditions.

PROPOSED IMPROVEMENTS:

The proposed improvements include ditch and culvert upgrades in conjunction with a storm sewer outfall system along 21st Lane. Ditch and culvert upgrades extend from County Farm Road to Hillside Road. The storm sewer begins at Zinno Blvd. and continues north in 21st Lane to Santa Fe Drive. The existing ditch along 21st Lane will remain to collect street and local drainage. At the time of any future development, the ditch should be eliminated with curb and gutter installed along 21st Lane. A lateral storm sewer system extends to 20th Lane in Santa Fe Drive (State Highway right-of-way). Upgraded ditch and culverts are proposed along 20th Lane from County Farm Road to Santa Fe Drive.

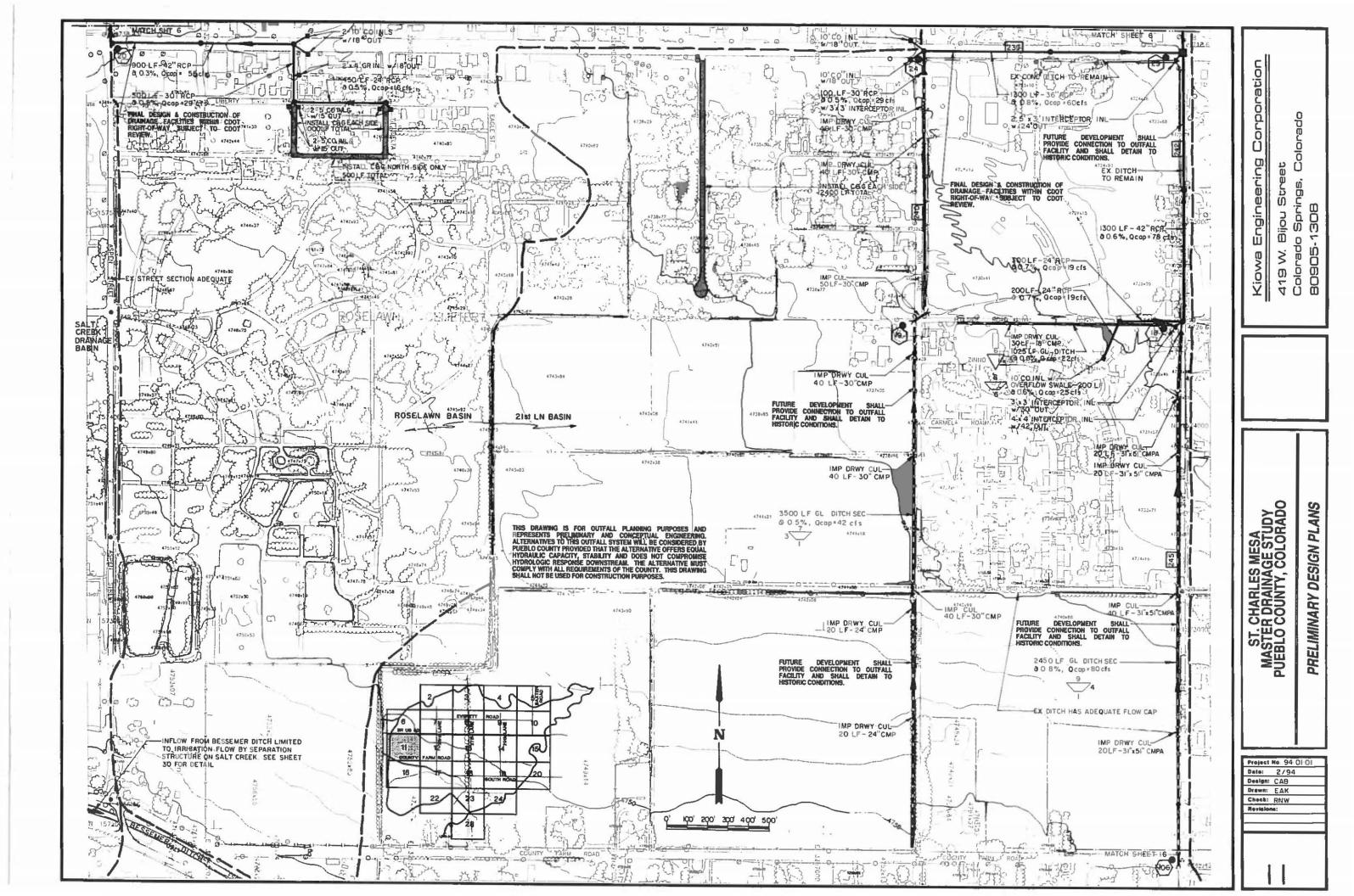
Total Estimated Construction Cost Engineering and Contingency (20%) **Total Estimated Cost**

Curb and gutter

Headwalls

Preliminary Design Cost Estimate Sheet 11

Acon Speet/Readings Radia


2400

LF

13 EA

Improvement	Quantity	Unit	Unit Cost	Unit Cost	Total	Total	Total
			Material	Installation	Material	Installation	
42" RCP	900	LF	\$60	\$18	\$54,000	\$16,200	\$70,200
30" RCP	300	LF	\$38	\$10	\$11,400	\$3,000	\$14,400
24" RCP	450	LF	\$25	\$ 6	\$11,250	\$2,700	\$13,950
18" CMP	60	LF	\$17	\$6	\$1,020	\$360	\$1,380
15" CMP	40	LF	\$15	\$6	\$600	\$240	\$840
Manholc	5	EA	\$2,000	\$500	\$10,000	\$2,500	\$12,500
10' CO Inlet	2	EA	\$3,000	\$1,000	\$6,000	\$2,000	\$8,000
5' CO Inlet	4	EA	\$2,500	\$800	\$10,000	\$3,200	\$13,200
Curb and Gutter	1600	LF	S4	\$2	\$6,400	\$3,200	\$9,600
Pavement Replacement	2250	SY	\$15	\$5	\$33,750	\$11,250	\$45,000
Bessemer Separation struc	1	EA	\$25,000	\$15,000	\$25,000	\$15,000	\$40,000
2' x 4' Grated Inlet	1	EA	\$1,500	\$500	\$1,500	\$500	\$2,000
Total Estimated Construction	Cost				\$170,920	\$60,150	\$231,070
Engineering and Contingency	(20%)				\$34,184	\$12,030	\$46,214
Total Estimated Cost					\$205,104	\$72,180	\$277,284

Cost	Unit Cost	Total	Total	Total
crial	Installation	Material	Installation	
\$60	\$18	\$6,000	\$1,800	\$7,800
\$60	\$15	\$80,400	\$20,100	\$100,500
\$46	\$10	\$59,800	\$13,000	\$72,800
\$38	\$10	\$3,800	\$1,000	\$4,800
\$29	\$10	\$7,830	\$2,700	\$10,530
\$22	\$6	\$1,320	\$360	\$1,680
\$25	\$6	\$12,500	\$3,000	\$15,500
\$17	\$6	\$1,190	\$420	\$1,610
\$4,000	\$1,000	\$4,000	\$1,000	\$5,000
\$2,000	\$500	\$10,000	\$2,500	\$12,500
\$2,500	\$800	\$2,500	\$800	\$3,300
\$1,500	\$500	\$3,000	\$1,000	\$4,000
\$1,500	\$500	\$1,500	\$500	\$2,000
\$3,000	\$1,000	\$9,000	\$3,000	\$12,000
\$15	\$5	\$54,000	\$18,000	\$72,000
\$5	\$15	\$22,625	\$67,875	\$90,500
\$5	\$15	\$13,250	\$39,750	\$53,000
\$4	\$2	\$9,600	\$4,800	\$14,400
\$400	\$400	\$5,200	\$5,200	\$10,400
	2	\$307,515	\$186,805	\$494,320
		\$61,503	\$188,803	\$98,864
				10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
		\$369,018	\$224,166	\$593,1

		100900000000000000000000000000000000000	
	Improvement	Quantity	Unit
FLOW PATH: 23rd Lane DRAINAGE BASINS: 23rd Lane			
	48" RCP	1300	LF
5-YEAR DESIGN: 31 to 100 cfs	42" RCP	1325	LF
	36" RCP	800	LF
	30" RCP	500	LF
EXISTING CONDITIONS:	30" CMP	50	LF
This portion of the 23rd Lane Basin is mostly residential with numerous agricultural areas. The existing drainage facilities	24" CMP	220	LF
nclude roadside ditches with culverts. Some ditches are inadequate and some smaller areas lack suitable outfall facilities.	Box Base Manhole	4	EA
	Manhole	5	EA
UTURE CONDITIONS:	2' x 3' Intercepting Inlet	2	EA
Future land use is anticipated to include increased residential use. Onsite detention shall be required to maintain historic	3' x 3' Intercepting Inlet	1	EA
evels.	Gratalined channel	4100	LF
	Pavement Replacement	4350	SY
PROPOSED IMPROVEMENTS:	Curb and Gutter	200	LF
The proposed improvements along 23rd Lane consist of a storm sewer system to convey upper basin flows and intercept	Headwalls	9	EA
local flows at major intersections. The existing roadside ditches will be used for local drainage Suitable outfall facilities are proposed	I ICAL WALL	,	1.07
or the smaller areas.			
	Total Estimated Construction	m Cost	
FLOW PATH: 25th Lane DRAINAGE BASINS: 25th Lane	Engineering and Contingen	cy (20%)	
	Total Estimated Cost		
5-YEAR DESIGN: 38 to 127 cfs			
	25th Lano Basin		** •.
	Improvement	Quantity	Unit
EXISTING CONDITIONS:			
This portion of the 25th Lane Basin is mostly residential with small agricultural areas. The existing drainage facilities			
nclude roadside ditches with culverts and unsuitable outfalls for smaller areas. Existing facilities along 25th Lane are inadequate for	42* RCP	970	LF
pper basin flows.	36" RCP	2920	LF
There is an existing detention pond located near Iris Road and 25th Lane which will remain.	36° CMP	470	LF
	30" RCP	520	LF
FUTURE CONDITIONS:	24" RCP	240	LF
Future land use is not anticipated to change.	18" RCP	570	LF
	Manhole	9	EA
PROPOSED IMPROVEMENTS:	Box Base Manhole	1	EA
The proposed improvements along 25th Lane consist of a storm sewer system to convey upper basin flows and intercept	5' CO Inles	7	EA
ocal flows at major intersections. The existing roadside ditches will be used for local drainage. Suitable outfall facilities are proposed	3" x 4" Grated Injet	1	EA
for the smaller areas.	3° x 3' Grated Inlet	1	EA
The system will have to cross Santa Fe Drive which is State Highway Right-of-way.	3" x 2' Grated Inlet	2	EA
	Pavement Replacement	4330	SY
	Paving Paving	4530	SY
	LEATIR	UCCP	31

Preliminary Design Cost Estimate Sheet 12

23rd Lenn Hasin

Total Estimated Construction Cost Engineering and Contingency (20%) Total Estimated Cost

Curb and gutter Cross pan

Concrete channel

Grasslined channel

Headwalls

1400

400

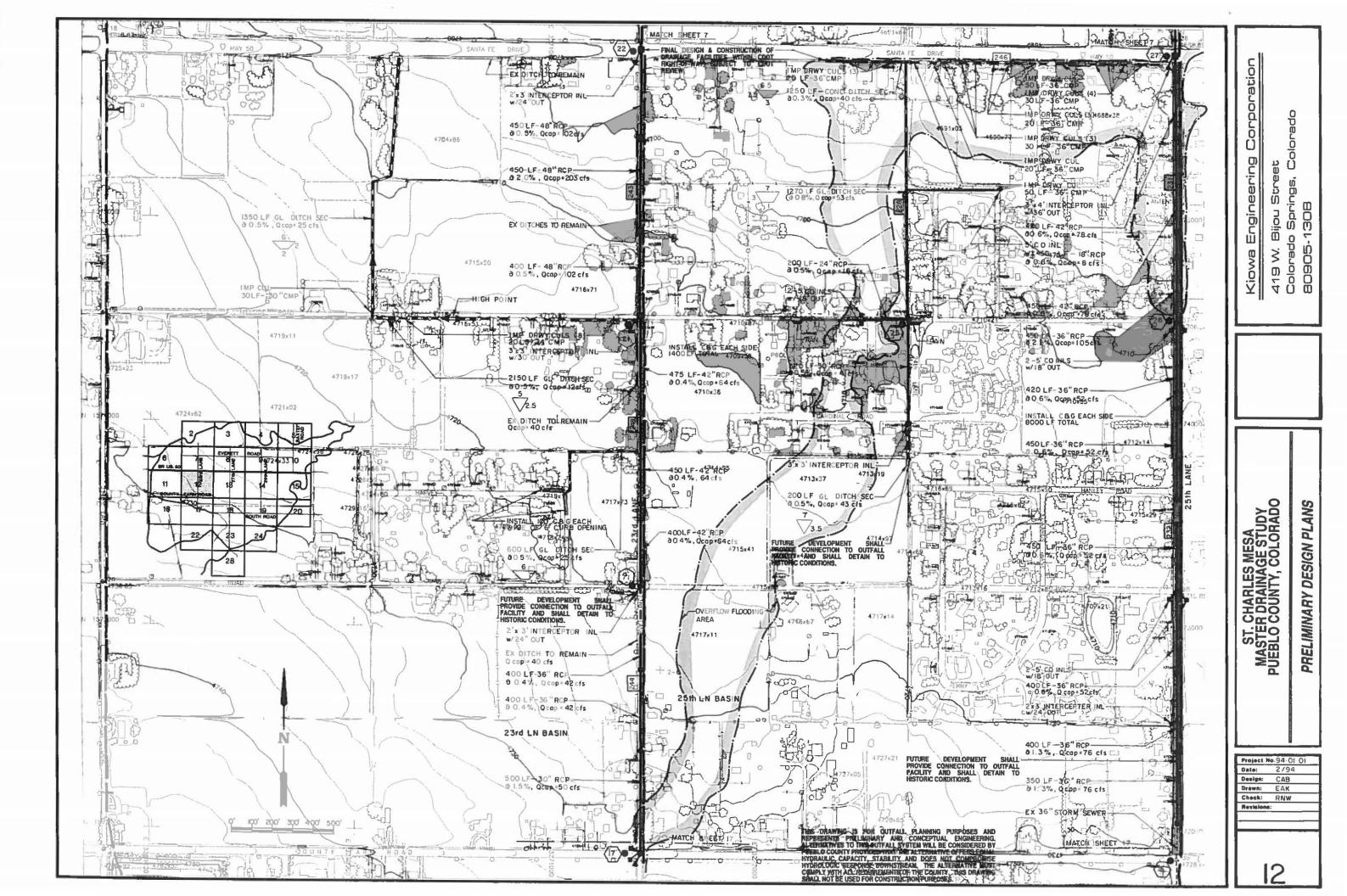
16

1250

1470

LF

SF


EA

LF

LF

Unit Cost Material	Unit Cost Installation	Total Material	Total Installation	Total
\$68	\$18	\$88,400	\$23,400	\$111,800
\$60	\$15	\$79,500	\$19,875	\$99,375
\$46	\$10	\$36,800	\$8,000	\$44,800
\$38	\$10	\$19,000	\$5,000	\$24,000
\$29	\$10	\$1,450	\$500	\$1,950
\$22	\$6	\$4,840	\$1,320	\$6,160
\$4,000	\$1,000	\$16,000	\$4,000	\$20,000
\$2,000	\$500	\$10,000	\$2,500	\$12,500
\$1,400	\$500	\$2,800	\$1,000	\$3,800
\$1,500	\$500	\$1,500	\$500	\$2,000
\$5	\$15	\$20,500	\$61,500	\$82,000
\$15	\$5	\$65,250	\$21,750	\$87,000
\$4	\$2	\$800	\$400	\$1,200
\$400	\$400	\$3,600	\$3,600	\$7,200
		\$350,440	\$153,345	\$503,785
		\$70,088	\$30,669	\$100,757
		\$420,528	\$184,014	\$604,542

Unit Cost	Unit Cost	Total	Total	Total
Material	Installation	Material	Installation	
\$60	\$18	\$58,200	\$17,460	\$75,660
\$46	\$10	\$134,320	\$29,200	\$163,520
\$35	\$10	\$16,450	\$4,700	\$21,150
\$38	\$10	\$19,760	\$5,200	\$24,960
\$25	\$6	\$6,000	\$1,440	\$7,440
\$20	\$6	\$11,400	\$3,420	\$14,820
\$2,000	\$500	\$18,000	\$4,500	\$22,500
\$4,000	\$1,000	\$4,000	\$1,000	\$5,000
\$2,500	\$800	\$17,500	\$5,600	\$23,100
\$2,000	\$700	\$2,000	\$700	\$2,700
\$1,500	\$500	\$1,500	\$500	\$2,000
\$1,400	\$500	\$2,800	\$1,000	\$3,800
\$15	\$5	\$64,950	\$21,650	\$86,600
\$4	\$4	\$18,120	\$18,120	\$36,240
\$4	\$2	\$5,600	\$2,800	\$8,400
\$8	\$2	\$3,200	\$800	\$4,000
\$400	\$400	\$6,400	\$6,400	\$12,800
\$50	\$50	\$62,500	\$62,500	\$125,000
\$5	\$15	\$7,350	\$22,050	\$29,400
			A000 040	
		\$460,050	\$209,040	\$669,090
		\$92,010	\$41,808	\$133,818
		\$552,060	\$250,848	\$802,908

FLOW PATH: 27th Lane

_

DRAINAGE BASINS: 27th Lane

5-YEAR DESIGN: 64 to 112 cfs

EXISTING CONDITIONS:

This portion of the 27th Lane Basin contains residential and agricultural areas. The existing drainage facilities include roadside ditches with culverts, and streets with curb and gutter. The ditch along 27th Lane is insufficient for upper basin flows. Hillside and Iris roads both have insufficient capacity ditches and culverts.

FUTURE CONDITIONS:

Future land use is anticipated to include increased residential and commercial uses. Onsite detention shall be required to maintain historic levels.

PROPOSED IMPROVEMENTS:

The proposed improvements consist of improving the culverts along 27th Lane from Iris Road to Hillside Road. A storm sewer outfall system begins at Hillside Road and continues northerly in 27th Lane. The ditch sections and culverts will be upgraded along Iris and Hillside roads.

FLOW PATH: 29th Lanc

DRAINAGE BASINS: 29th Lane

5-YEAR DESIGN: 47 cfs

-

EXISTING CONDITIONS:

This portion of the 29th Lane Basin contains residential and agricultural uses. The existing drainage facilities include streets with curb and gutter, and roadside ditches.

The major outfall for this area is the low ground in between 27th and 28th Lanes. Currently there are no facilities in this area.

FUTURE CONDITIONS:

Future land use is anticipated to include increased residential and commercial uses. Onsite detention shall be required to maintain historic levels.

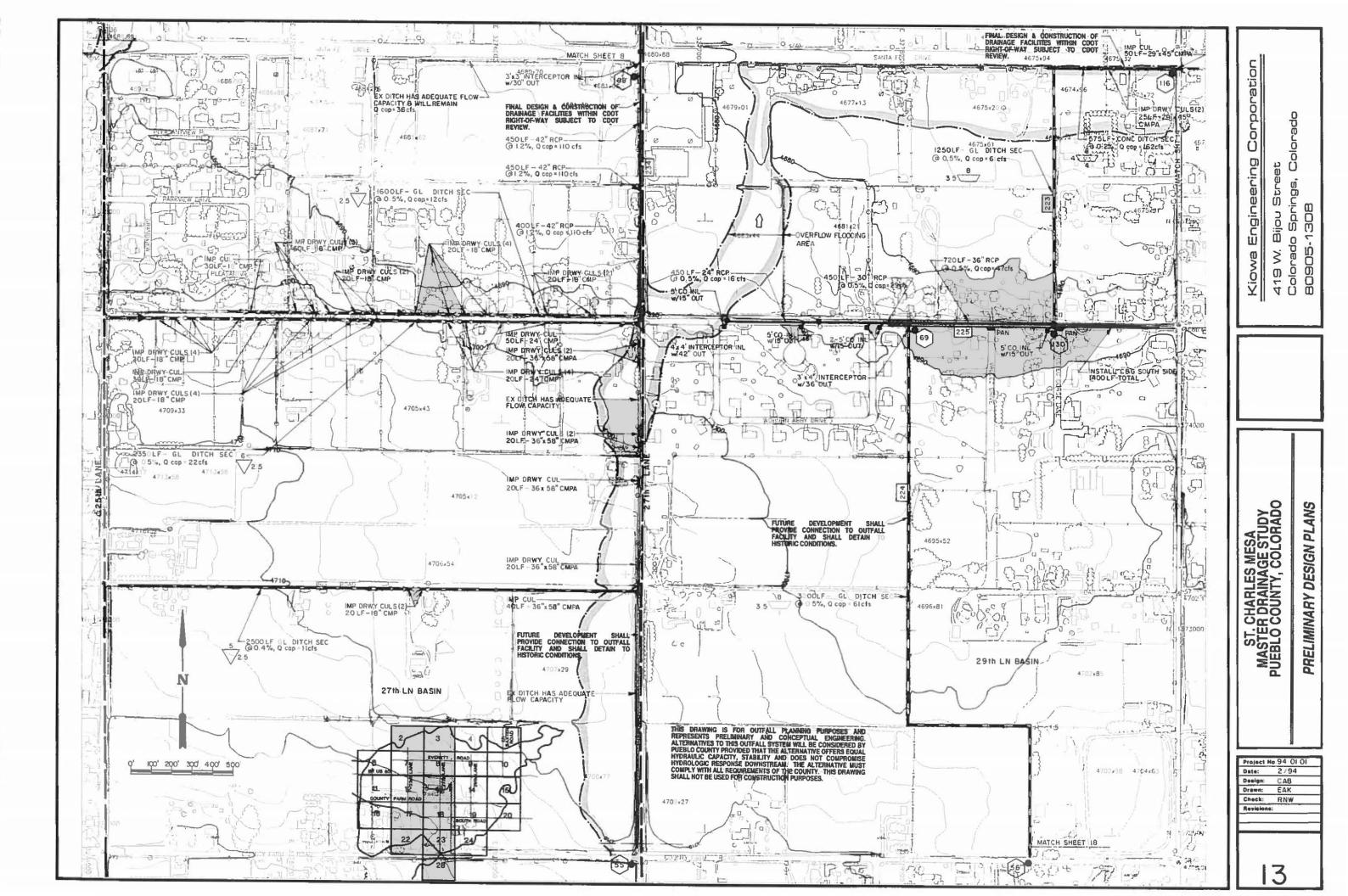
PROPOSED IMPROVEMENTS:

The proposed improvements consist of providing facilities through the low areas from County Farm Road to Santa Fe Drive. Curb and gutter is proposed along the south side of Hillside with a storm sewer to direct flow to a low spot near Toltec Gorge Lane. A new concrete channel is proposed along Santa Fe Drive (State Highway right-of-way) to convey the runoff easterly.

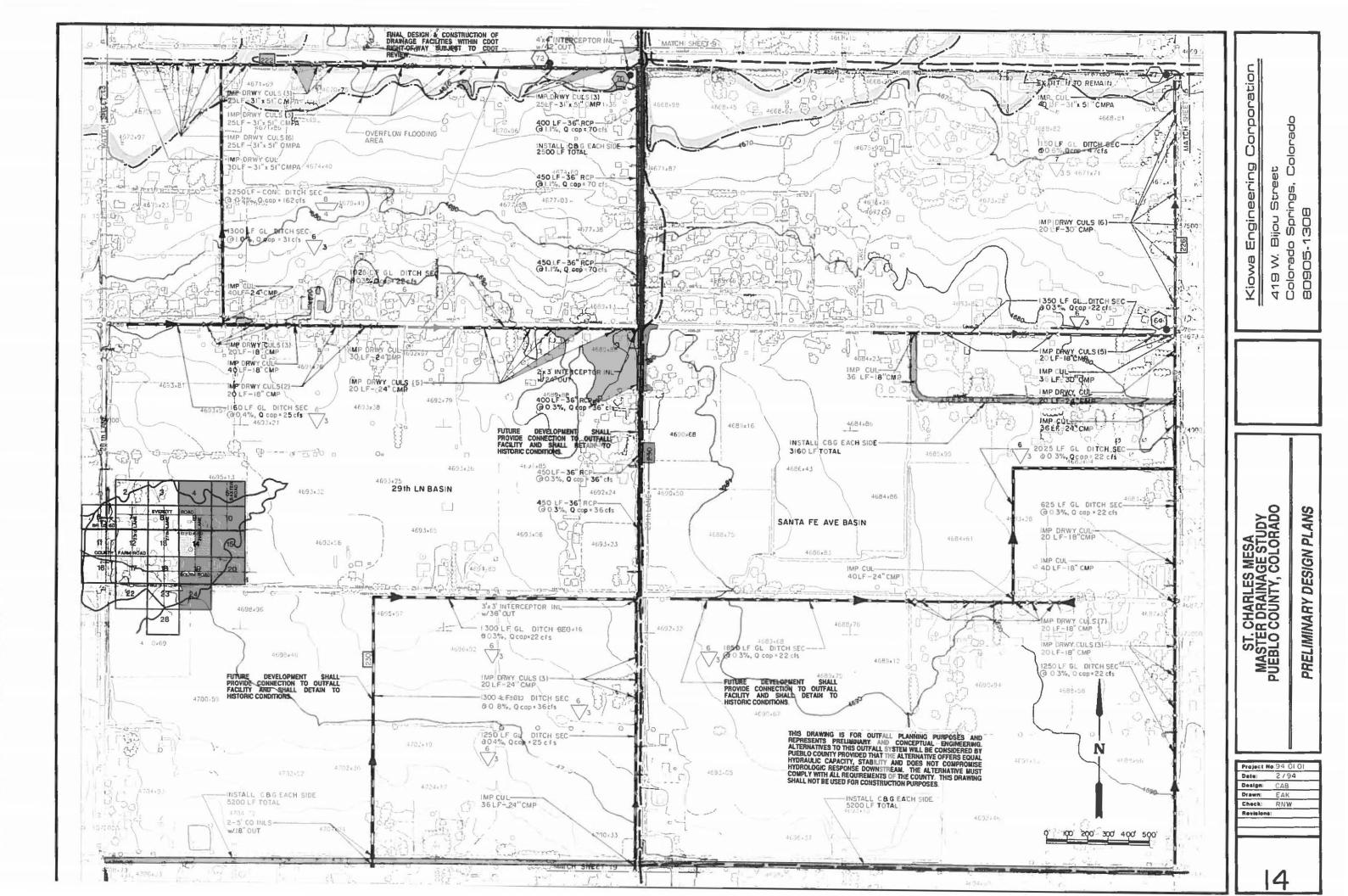
Preliminary Design Cost Estimate Sheet 13

29th Lune Bailin			
Improvement	Quantity	Unit	
36" RCP	720	LF	
29" x 45" CMPA	100	LF	
30" RCP	450	LF	
24" RCP	450	LF	
15" CMP	80	LF	
Manhole	2	EA	
3' x 4' Intercepting Inlet	1	EA	
5' CO Inlet	5	EA	
Grasslined channel	4450	LF	
Concrete channel	575	LF	
Curb and Gutter	1400	LP	
Cross pan	400	SF	
Headwalls	3	EA	

Total Estimated Construction Cost Engineering and Contingency (20%) Total Estimated Cost

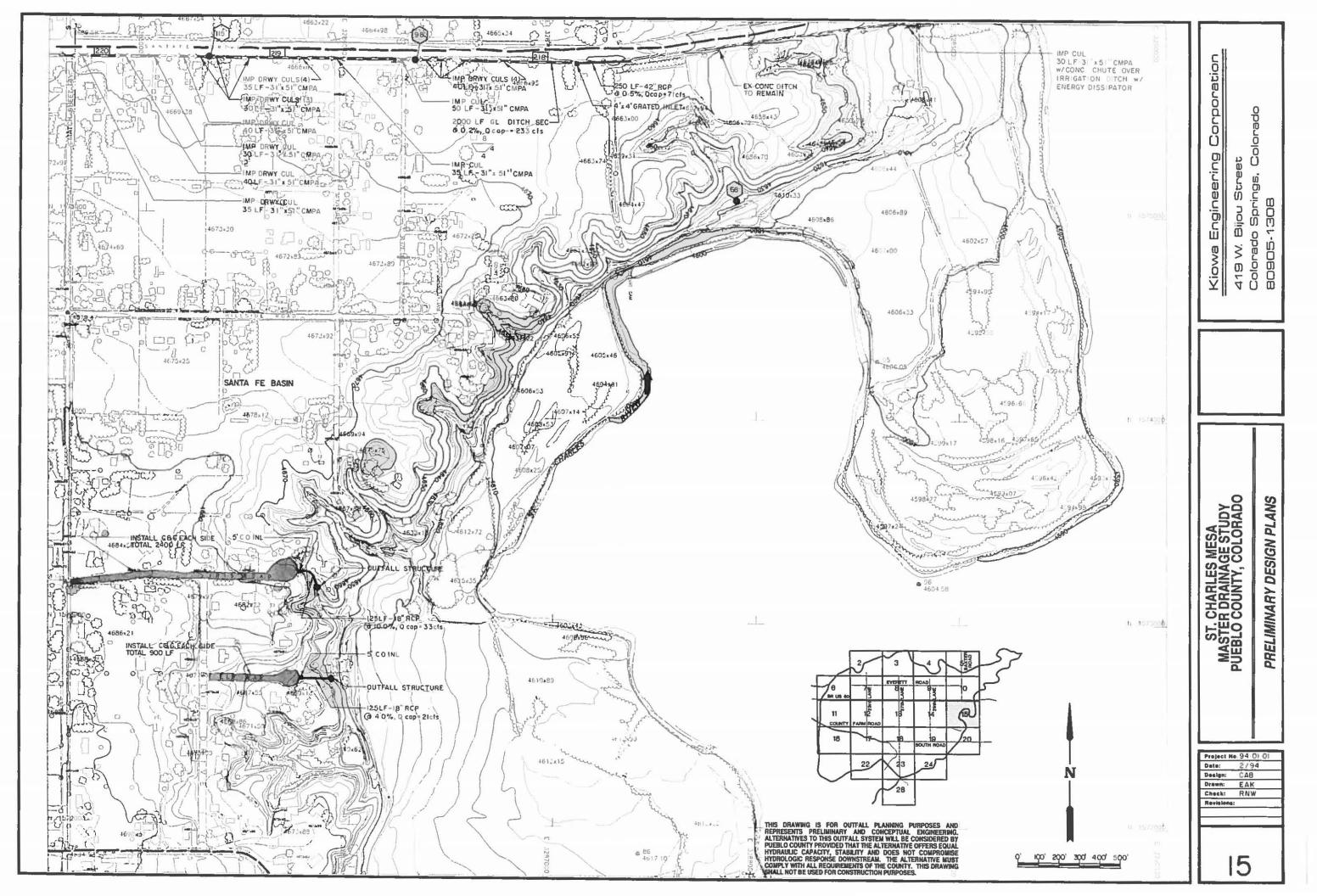

27th Lane Basin

Improvement	Quantity	Unit
42" CMP	1320	LF
24" CMP	1320	LF
18" CMP	600	LF
30" CMP	20	LF
36" X 58" CMPA	160	LF
3' X 3' Intercepting Inlet	1	EA
4' X 4' Intercepting Inlet	1	EA
Grasslined channel	2350	LF
Grasslined channel	3900	LF
5' Manhole	3	EA
Headwalls	35	EA


Total Estimated Construction Cost Engineering and Contingency (20%) Total Estimated Cost

Unit Cost Material	Unit Cost Installation	Total Material	Total Installation	Total
\$46	\$10	\$32 100	£7 200	\$40,220
	(* * *	\$33,120	\$7,200	\$40,320
\$59	\$12	\$5,900	\$1,200	\$7,100
\$38	\$10	\$17,100	\$4,500	\$21,600
\$25	\$6	\$11,250	\$2,700	\$13,950
\$15	\$ 6	\$1,200	\$480	\$1,680
\$2,000	\$500	\$4,000	\$1,000	\$5,000
\$2,000	\$700	\$2,000	\$700	\$2,700
\$2,500	\$800	\$12,500	\$4,000	\$16,500
\$5	\$15	\$22,250	\$66,750	\$89,000
\$60	\$60	\$34,500	\$34,500	\$69,000
\$4	\$2	\$5,600	\$2,800	\$8,400
\$8	\$2	\$3,200	\$800	\$4,000
\$400	\$400	\$1,200	\$1,200	\$2,400
		\$153,820	\$127,830	\$281,650
		\$30,764	\$25,566	\$56,330
		\$184,584	\$153,396	\$337,980

Unit Cost Material	Unit Cost Installation	Total Material	Total Installation	Total
\$42	\$15	\$55,440	\$19,800	\$75,240
\$22	\$6	\$2,860	\$780	\$3,640
\$17	\$6	\$10,200	\$3,600	\$13,800
\$29	\$10	\$580	\$200	\$780
\$52	\$18	\$8,320	\$2,880	\$11,200
\$1,500	\$500	\$1,500	\$500	\$2,000
\$2,500	\$800	\$2,500	\$800	\$3,300
\$5	\$15	\$11,750	\$35,250	\$47,000
\$5	\$15	\$19,500	\$58,500	\$78,000
\$2,000	\$500	\$6,000	\$1,500	\$7,500
\$400	\$400	\$14,000	\$14,000	\$28,000
		\$132,650	\$137,810	\$270,460
		\$26,530	\$27,562	\$54,092
		\$159,180	\$165,372	\$324,552


COMM	ENTARY SHEET 14	Santa Fu Avenus Basin							
FLOW PATH: 29th Lane	DRAINAGE BASINS: 29th Lane	Improvement	Quantity	Unit	Unit Cost	Unit Cost	Total	Total	Total
5-YEAR DESIGN: 25 to 100 cfs					Material	Installation	Material	Installation	· · · · ·
		30" CMP	156	LF	\$29	\$10	\$4,524	\$1,560	\$6,084
EXISTING CONDITIONS:		31" x 51" CMPA	40	LF	\$60	\$18	\$2,400	\$720	\$3,120
long 29th Lane are inadequate for upper basin flows	is residential and agricultural areas. The existing roadside ditch and culverts	24" CMP	76	LF	\$22	\$6	\$1,672	\$456	\$2,128
	Road and Santa Fe Drive are also inadequate.	18" CMP	376	LF	\$17	\$6	\$6,392	\$2,256	\$8,648
······································		Grasslined channel	7100	LF	\$5	\$15	\$35,500	\$106,500	\$142,000
UTURE CONDITIONS:		Grasslined channel	1150	LF	\$5	\$15	\$5,750	\$17,250	\$23,000
Future land use is anticipated to include inc	reased residential use. Onsite detention shall be required to maintain runoff at	Curb and Gutter	8360	LF	\$4	\$2	\$33,440	\$16,720	\$50,160
istoric levels.		Headwalls	28	EA	\$400	\$400	\$11,200	\$11,200	\$22,400
PROPOSED IMPROVEMENTS:				12					
	roving the ditches and culverts along Hillside Road, Iris Road and Santa Fe	Total Estimated Construction	n Cost				\$100,878	\$156,662	\$257,540
	utfall system begins at the intersection of 29th Lane and Iris Road to convey 29th Lance from Iris Road to Hillside Road will remain to collect street and	Engineering and Contingence					\$20,176	\$31,332	\$51,508
	ditch can be eliminated and curb and gutter installed along 29th Lane. The	Total Estimated Cost					\$121,054	\$187,994	\$309,048
and the second	Fe Drive shall be eliminated and curb and gutter installed along 29th Lane.								
		29th Lane Basin							
FLOW PATH: Santa Fe Drive	DRAINAGE BASINS: Santa Fe	Improvement	Quantity	Unit	Unit Cost	Unit Cost	Total	Total	Total
5-YEAR DESIGN: 26 to 63 cfs		anipi o vennome			Material	Installation	Material	Installation	
					A 10	***	89.40		81 0 40
EXISTING CONDITIONS:		42" CMP	20	LF	\$42	\$10	\$840	\$200	\$1,040
	ntains residential and agricultural uses. The existing drainage facilities include	36" CMP	20	LF	\$35	\$10	\$700	\$200	\$900
	s. Some low areas have insufficient capacity outfall facilities.	36" RCP	2600	LF	\$46	\$10	\$119,600	\$26,000	\$145,600
		18" CMP	140	LF	\$17	\$6	\$2,380	\$840	\$3,220
FUTURE CONDITIONS:		24" CMP	286	LF	\$22	\$6	\$6,292	\$1,716	\$8,008
	creased residential use. Onsite detention shall be required to maintain historic	31" x 51" CMPA	405	LF	\$60	\$18	\$24,300	\$7,290	\$31,590
levels.		2' x 3' Intercepting inlet	1	BA	\$1,400	\$500	\$1,400	\$500	\$1,900
PROPOSED IMPROVEMENTS:		3' x 3' Intercepting inlet	1	EA	\$1,500	\$500	\$1,500	\$500	\$2,000
		4' x 4' Intercepting Inlet	1	EA	\$2,500	\$800	\$2,500	\$800	\$3,300
	roving the insufficient ditch and culvert areas, and providing suitable outfalls							\$1,600	\$6,600
	roving the insufficient ditch and culvert areas, and providing suitable outfalls	5' CO Inlet	2	EA	\$2,500	\$800	\$5,000		
	roving the insufficient ditch and culvert areas, and providing suitable outfalls	5' CO Inlet Box Base Manhole	1	EA	\$4,000	\$1,000	\$4,000	\$1,000	\$5,000
	roving the insufficient ditch and culvert areas, and providing suitable outfalls	5' CO Inlet Box Base Manhole 5' manhole	1	EA EA	\$4,000 \$2,000	\$1,000 \$500	\$4,000 \$12,000	\$1,000 \$3,000	\$15,000
	roving the insufficient ditch and culvert areas, and providing suitable outfalls	5' CO Inlet Box Base Manhole 5' manhole Grasslined channel	1 6 7335	EA EA LF	\$4,000 \$2,000 \$5	\$1,000 \$500 \$15	\$4,000 \$12,000 \$36,675	\$1,000 \$3,000 \$110,025	\$15,000 \$146,700
	roving the insufficient ditch and culvert areas, and providing suitable outfalls	5' CO Inlet Box Base Manhole 5' manhole	1 6 7335 2250	EA EA	\$4,000 \$2,000 \$5 \$50	\$1,000 \$500 \$15 \$50	\$4,000 \$12,000 \$36,675 \$112,500	\$1,000 \$3,000 \$110,025 \$112,500	\$15,000 \$146,700 \$225,000
	roving the insufficient ditch and culvert areas, and providing suitable outfalls	5' CO Inlet Box Base Manhole 5' manhole Grasslined channel Concrete channel Pavement Replacement	1 6 7335 2250 3450	EA EA LF LF SY	\$4,000 \$2,000 \$5 \$50 \$15	\$1,000 \$500 \$15 \$50 \$50	\$4,000 \$12,000 \$36,675 \$112,500 \$51,750	\$1,000 \$3,000 \$110,025 \$112,500 \$17,250	\$15,000 \$146,700 \$225,000 \$69,000
	roving the insufficient ditch and culvert areas, and providing suitable outfalls	5' CO Inlet Box Base Manhole 5' manhole Grasslined channel Concrete channel	1 6 7335 2250	EA EA LF LF	\$4,000 \$2,000 \$5 \$50	\$1,000 \$500 \$15 \$50	\$4,000 \$12,000 \$36,675 \$112,500	\$1,000 \$3,000 \$110,025 \$112,500	\$15,000 \$146,700 \$225,000
for the low areas.	roving the insufficient ditch and culvert areas, and providing suitable outfalls	5' CO Inlet Box Base Manhole 5' manhole Grasslined channel Concrete channel Pavement Replacement	1 6 7335 2250 3450	EA EA LF LF SY	\$4,000 \$2,000 \$5 \$50 \$15	\$1,000 \$500 \$15 \$50 \$50	\$4,000 \$12,000 \$36,675 \$112,500 \$51,750	\$1,000 \$3,000 \$110,025 \$112,500 \$17,250	\$15,000 \$146,700 \$225,000 \$69,000
	roving the insufficient ditch and culvert areas, and providing suitable outfalls	5' CO Inlet Box Base Manhole 5' manhole Grasslined channel Concrete channel Pavement Replacement Curb and gutter	1 6 7335 2250 3450 7700	EA EA LF SY LF	\$4,000 \$2,000 \$5 \$50 \$15 \$4	\$1,000 \$500 \$15 \$50 \$55 \$2	\$4,000 \$12,000 \$36,675 \$112,500 \$51,750 \$30,800	\$1,000 \$3,000 \$110,025 \$112,500 \$17,250 \$15,400	\$15,000 \$146,700 \$225,000 \$69,000 \$46,200
	roving the insufficient ditch and culvert areas, and providing suitable outfalls	5' CO Inlet Box Base Manhole 5' manhole Grasslined channel Concrete channel Pavement Replacement Curb and gutter	1 6 7335 2250 3450 7700 33	EA EA LF SY LF	\$4,000 \$2,000 \$5 \$50 \$15 \$4	\$1,000 \$500 \$15 \$50 \$55 \$2	\$4,000 \$12,000 \$36,675 \$112,500 \$51,750 \$30,800	\$1,000 \$3,000 \$110,025 \$112,500 \$17,250 \$15,400	\$15,000 \$146,700 \$225,000 \$69,000 \$46,200 \$26,400
	roving the insufficient ditch and culvert areas, and providing suitable outfalls	5' CO Inlet Box Base Manhole 5' manhole Grasslined channel Concrete channel Pavement Replacement Curb and gutter Headwalls	1 6 7335 2250 3450 7700 33 33	EA EA LF SY LF	\$4,000 \$2,000 \$5 \$50 \$15 \$4	\$1,000 \$500 \$15 \$50 \$55 \$2	\$4,000 \$12,000 \$36,675 \$112,500 \$51,750 \$30,800 \$13,200	\$1,000 \$3,000 \$110,025 \$112,500 \$17,250 \$15,400 \$13,200	\$15,000 \$146,700 \$225,000 \$69,000 \$46,200

Santa Fa Drive Basin FLOW PATH: Santa Fe Drive DRAINAGE BASINS: Santa Fe Quantity Unit Improvement 5-YEAR DESIGN: 63 to 80 cfs 250 LF 42" RCP -31" x 51" CMPA 650 LF **EXISTING CONDITIONS:** 250 LF 18" CMP This portion of the Santa Fe Basin is mostly residential development. Existing drainage patterns include roadside ditches. Grasslined channel 2000 LF The ditch along the western portion Santa Fe Drive is inadequate for upper basin flows. 1 EA 4' X 4' Grated Inlet FUTURE CONDITIONS: 5' CO Inlet 2 EA Future land use is not anticipated to change. 3300 LF Curb and Gutter 5600 SY Paving PROPOSED IMPROVEMENTS: Energy dissapator 1 EA An improved ditch is proposed along the western portion Santa Fe Drive. Curb and gutter is proposed along Elf Way and 2 EA **Outfall Structures** Iris Road to help convey runoff. 18 EA Headwalls

Total Estimated Construction Cost Engineering and Contingency (20%) Total Estimated Cost

Unit Cost Material	Unit Cost Installation	Total Material	Total Installation	Total
	15- A.			
\$42	\$15	\$10,500	\$3,750	\$14,250
\$60	\$18	\$39,000	\$11,700	\$50,700
\$17	\$6	\$4,250	\$1,500	\$5,750
\$5	\$15	\$10,000	\$30,000	\$40,000
\$2,500	\$800	\$2,500	\$800	\$3,300
\$2,500	\$800	\$5,000	\$1,600	\$6,600
\$4	\$2	\$13,200	\$6,600	\$19,800
\$4	\$4	\$22,400	\$22,400	\$44,800
\$6,000	\$6,000	\$6,000	\$6,000	\$12,000
\$25,000	\$10,000	\$50,000	\$20,000	\$70,000
\$400	\$400	\$7,200	\$7,200	\$14,400
		\$170.050	\$111,550	\$281,600
		\$34,010	\$22,310	\$56,320
		\$204,060	\$133,860	\$337,920

.....

		21st Line Basis							
FLOW PATH: Bessemer Ditch	DRAINAGE BASINS: Bessemer	Improvement	Quantity	Unit	Unit Cost	Unit Cost	Total	Total	Total
5-YEAR FLOW RANGE: 16 to 42 cfs					Material	Installation	Material	Installation	100-0
100-YEAR FLOW RANGE: 89 to 400 cfs									
		24" CMP	60	LF	\$22	\$6	\$1,320	\$360	\$1,68
		18" CMP	165	LF	\$17	\$6	\$2,805	\$990	\$3,79
EXISTING CONDITIONS:		Grasslined channel	835	LF	\$15	\$15	\$12,525	\$12,525	\$25,050
This portion of the Bessemer Basin is	largely undeveloped, with small areas of residential development along La Salle	Concrete rundown	1	EA	\$5,000	\$5,000	\$5,000	\$5,000	\$10,00
Road. The undeveloped areas include agricultural	and open space uses. Existing drainage patterns consist of numerous areas of	Concrete Cross pan	200	SF	\$8	\$2	\$1,600	\$400	\$2,00
sheetflow into the Bessemer Ditch with shallow por	nding in various low areas south of La Salle Road.	Headwalls	5	EA	\$400	\$400	\$2,000	\$2,000	\$4,00
FUTURE CONDITIONS:					10 - M M				
Future land use is not anticipated to char	nge from the present conditions.								
1993-billing and an and an		Total Estimated Constructi	ion Cost				\$25,250	\$21,275	\$46,52
PROPOSED IMPROVEMENTS:		Engineering and Contingen	ncy (20%)				\$5,050	\$4,255	\$9,30
A system of roadside ditches and curb a	and gutter, along La Salle Road, will be used to direct the drainage to various low	Total Estimated Cost					\$30,300	\$25,530	\$55,83
spots. These low spots will be used as collection	points and a small storm sewer system will convey the drainage to the Bessemer								•
Ditch. This system will alleviate the ponding areas	along La Salle Road.	Bassemar Ditch Basin							
				-			1000 X 100		
		Improvement	Quantity	Unit	Unit Cost	Unit Cost	Total	Total	Total
FLOW PATH: 21st Lane	DRAINAGE BASINS: 21st Lane				Material	Installation	Material	Installation	

5-YEAR DESIGN: 69 cfs

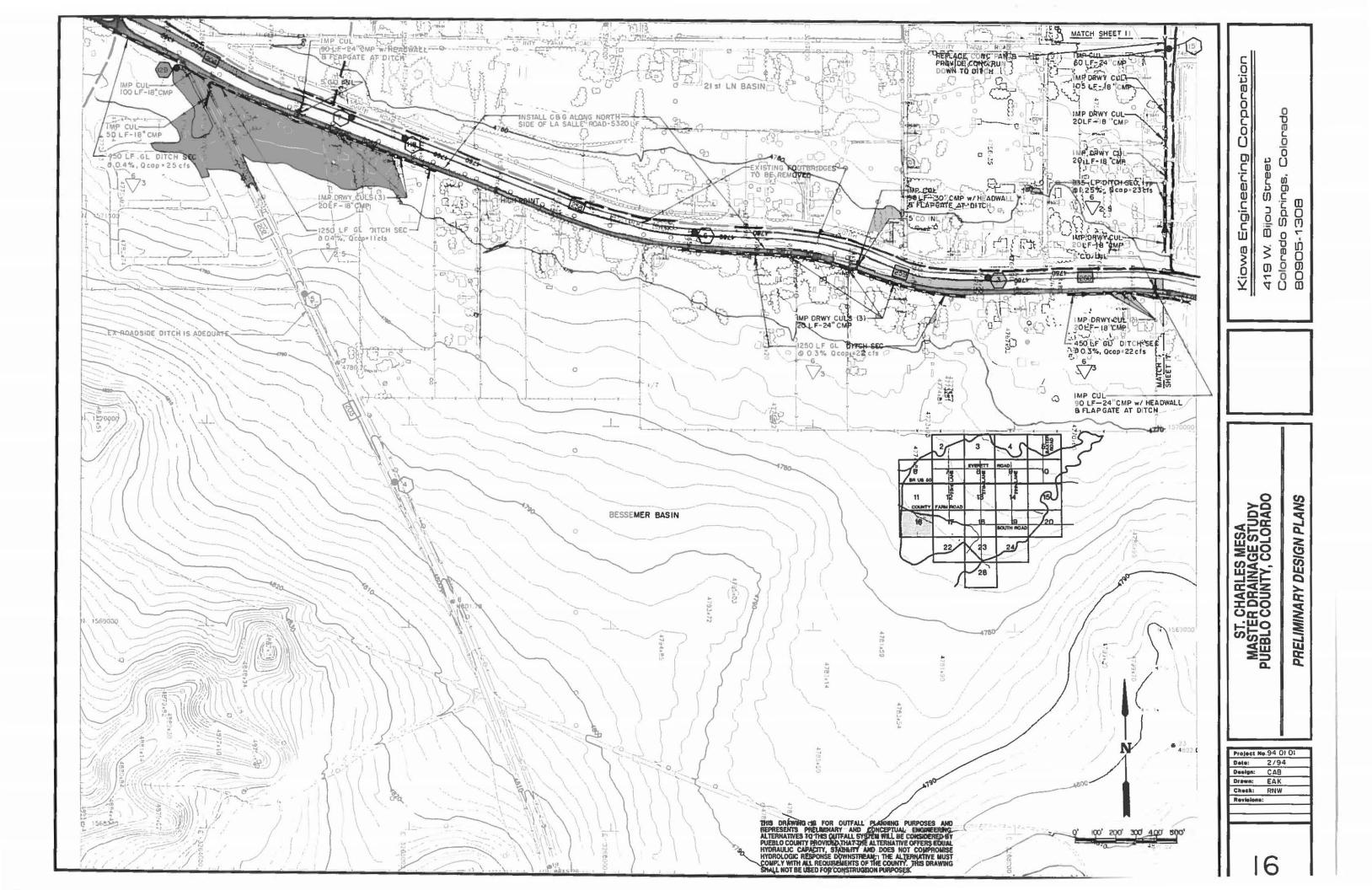
EXISTING CONDITIONS:

This portion of the 21st Lane Basin primarily contains residential development. The existing drainage facilities include roadside ditches, driveway culverts and curb and gutter along County Farm Road. The existing system along 21st has undersized culverts which triggers ditch overtopping.

FUTURE CONDITIONS:

Future land use is anticipated to include increased residential use. Onsite detention shall be required to maintain historic levels.

PROPOSED IMPROVEMENTS:


The proposed improvements consist of ditch and driveway culvert upgrades along 21st Lane.

Preliminary Design Cost Estimate Sheet 16

21er Tane Resin

Improvement	Quantity	Unit	Unit Cost Material	Unit Cost Installation	Total Material	Total Installation	Total
		0 10 00 0	AVIAUCTICAN	DISCELLEUCH	Matchiat	Installation	
24" CMP	60	LF	\$22	\$6	\$1,320	\$360	\$1,680
18" CMP	165	LF	\$17	\$6	\$2,805	\$990	\$3,795
Grasslined channel	835	LF	\$15	\$15	\$12,525	\$12,525	\$25,050
Concrete nindown	1	EA	\$5,000	\$5,000	\$5,000	\$5,000	\$10,000
Concrete Cross pan	200	SF	\$8	\$2	\$1,600	\$400	\$2,000
Headwalls	5	EA	\$400	\$400	\$2,000	\$2,000	\$4,000
Total Estimated Construction Co	ost		8. A-213		\$25,250	\$21,275	\$46,525
Engineering and Contingency (2	20%)				\$5,050	\$4,255	\$9,305
Total Estimated Cost					\$30,300	\$25,530	\$55,830

Improvement	Quantity	Unit	Unit Cost Material	Unit Cost Installation	Total Material	Total Installation	Total
30" CMP	90	LF	\$29	\$10	\$2,610	\$900	\$3,510
24" CMP	240	LF	\$22	\$6	\$5,280	\$1,440	\$6,720
18" CMP	270	LF	\$17	\$6	\$4,590	\$1,620	\$6,210
Ditch Headwall	3	EA	\$800	\$800	\$2,400	\$2,400	\$4,800
Flap Gates	3	EA	\$700	\$400	\$2,100	\$1,200	\$3,300
5' CO Inlet	3	EA	\$2,500	\$800	\$7,500	\$2,400	\$9,900
Grasslined channel	2150	LF	\$5	\$15	\$10,750	\$32,250	\$43,000
Grasslined channel	1250	LF	\$5	\$15	\$6,250	\$18,750	\$25,000
Curb and Gutter	5320	LF	\$4	\$2	\$21,280	\$10,640	\$31,920
Paving	2365	SY	\$4	\$4	\$9,460	\$9,460	\$18,920
Headwalls	14	EA	\$400	\$400	\$5,600	\$5,600	\$11,200
Total Estimated Construct	ion Cost				\$77,820	\$86,660	\$164,480
Engineering and Continger					\$15,564	\$17,332	\$32,896
Total Estimated Cost	, (,				\$93,384	\$103,992	\$197,376

FLOW PATH: Bessemer Ditch

DRAINAGE BASINS: Bessemer

5-YEAR FLOW RANGE: 18 to 91 cfs 100-YEAR FLOW RANGE: 178 to 432 cfs

EXISTING CONDITIONS:

This portion of the Bessemer Basin is mainly residential development with some large open space areas. Existing drainage patterns include roadside ditches and culverts in some areas with minimal outfall facilities into the Bessemer Ditch. La Salle Road and Lombard Avenue both contain low areas which experience shallow ponding.

FUTURE CONDITIONS:

Future land use is not anticipated to change.

PROPOSED IMPROVEMENTS:

A system of roadside ditches, small storm sewer systems, unlined ditches and curbed streets will be used to direct the drainage to the Bessemer Ditch. The north side of LaSalle Road will be curb and guttered and inlets will be placed in the low spots to intercept street runoff. The ditches and culverts on the south side of LaSalle Road will be improved to drain the low areas. These low areas will be outfalled to the Beasemer Ditch.

FLOW PATH: 23rd Lane

DRAINAGE BASINS: 23rd Lane

5-YEAR DESIGN: 64 cfs

EXISTING CONDITIONS:

This portion of the 23rd Lane Basin contains residential and agricultural areas. The existing drainage facilities include roadside ditches with culverts and curb and gutter along County Farm Road. The ditch along 23rd Lane south of County Farm Road is adequate but the culverts are undersized which causes ditch overtopping. North of County Farm Road the ditch is undersized. **FUTURE CONDITIONS:**

Future land use is anticipated to include increased residential use. Onsite detention shall be required to maintain runoff at historic levels.

PROPOSED IMPROVEMENTS:

The proposed improvements consist of culvert upgrades along 23rd Lane south of County Farm Road. Beginning at County Farm Road will be a storm sewer system to convey drainage. The existing ditch will be used for local drainage only.

A paved street with curb and gutter is proposed for 22nd Lane to enhance the drainage in this area and to provide an adequate outfall for the cul-de-sac location.

FLOW PATH: 25th Lane

DRAINAGE BASINS: 25th Lane

5-YEAR DESIGN: 43 to 73 cfs

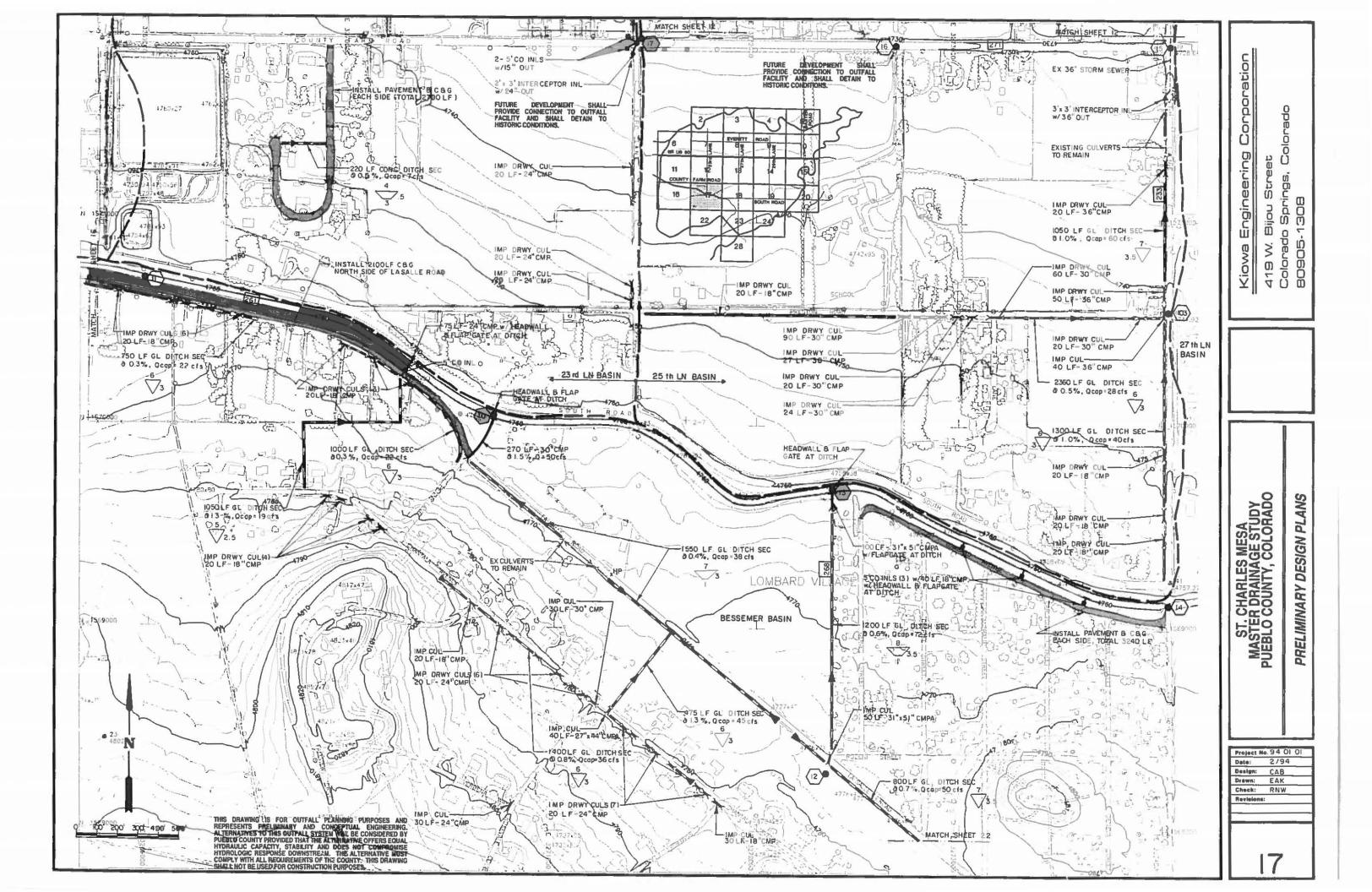
EXISTING CONDITIONS:

This portion of the 25th Lane Basin contains residential and agricultural areas. The existing drainage facilities include roadside ditches with culverts and curb and gutter along County Farm Road.

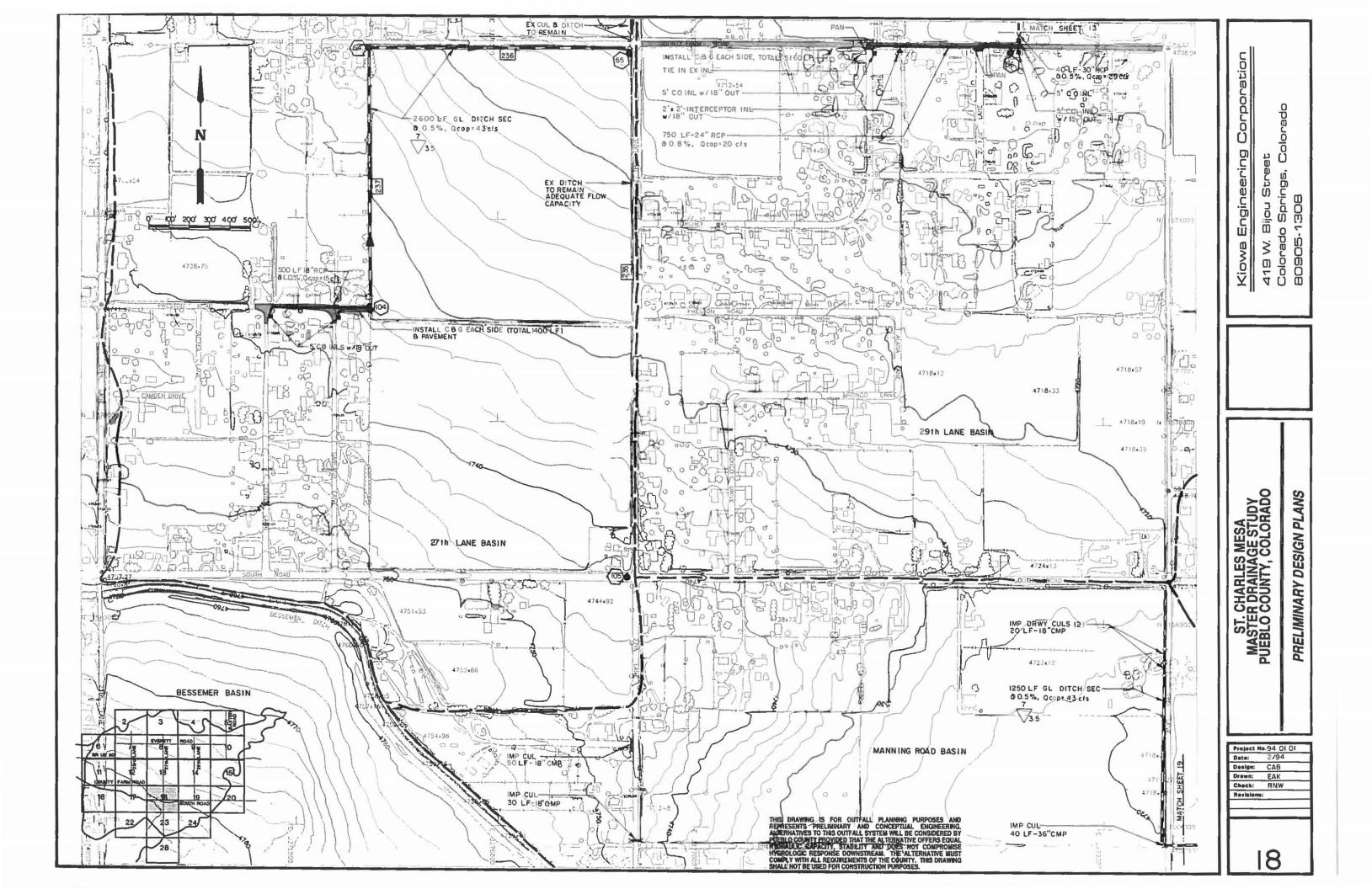
The ditch and culverts along 25th Lane south of County Farm Road are deficient. There is a partial storm sewer system in 25th Lane at the County Farm Road intersection. North of County Farm Road the ditch is undersized.

FUTURE CONDITIONS:

Future land use is anticipated to include increased residential use. Onsite detention shall be required to maintain runoff at historic levels.


PROPOSED IMPROVEMENTS:

The proposed improvements consist of ditch and culvert upgrades along 25th Lane south of County Farm Road. The inlet to the existing storm sewer will be improved and the system will be extended north. Ditch and culvert upgrades are also proposed for Preston Road.


Improvement	Quantity	Unit	Unit Cost Material	Unit Cost Installation	Total Material	Total Installation	Total
A. CWb	60	LF	\$25	\$6	\$1,500	\$360	\$1,86
1' x 3' Intercepting Inlet	1	EA	\$1,400	\$500	\$1,400	\$500	\$1,90
" CO Inlet	2	EA	\$2,500	\$800	\$5,000	\$1,600	\$6,60
reving	4800	SY	54	\$4	\$19,200	\$19,200	\$38,40
Concerte chattari	220	LP	\$25	\$25	\$5,500	\$5,500	\$11,0
Carb and Gatter	2700	LP	54	\$2	\$10,800	\$5,400	\$16,2
Headwalls	3	EA	\$400	\$400	\$1,200	\$1,200	\$2,44
Total Estimated Construction O	Cont				\$43,100	\$33,400	\$76,5
Engineering and Contingency (\$8,620	\$6,680	\$15,3
Total Estimated Cost					\$51,720	\$40,080	\$91,6

Improvement	Quantity	Unit	Unit Cost Material	Unit Cost Installation	Total Material	Total Installation	Total
36° CMP	110	LP	\$35	\$10	\$3,850	\$1,100	\$4,950
SC* CMP	241	LF	\$29	\$10	\$6,989	\$2,410	\$9,391
IS" CMP	80	LP	\$17	\$6	\$1,360	\$480	\$1,840
3' x 3' Grated Iniet	1	EA	\$1,500	\$500	\$1,500	\$500	\$2,00
Grandined Channel	3660	LP	\$5	\$15	\$18,300	\$54,900	\$73,20
Granitized Channel	1050	LP	\$5	\$15	\$5,250	\$15,750	\$21,00
Headwalls	13	EA	\$400	\$400	\$5,200	\$5,200	\$10,40
Total Estimated Construction	Cost				\$42,449	\$80,340	\$122,78
Engineering and Contingency					\$8,490	\$16,058	\$24,55
Total Estimated Cost					\$50,939	\$96,408	\$147,34

Ingrovement	Quantity	Unit	Unit Cost	Unit Cost	Total	Total	Total
			Material	Installation	Material	Installation	
I' x SI' CMPA	150	LP	\$60	\$18	\$9,000	\$2,700	\$11,700
7" x 44" CMPA	40	LP	\$55	\$10	\$2,200	\$400	\$2,600
M* CMP	365	LP	\$22	\$10	\$8,030	\$3,650	\$11,680
or CMP	300	LF	\$29	\$10	\$8,700	\$3,000	\$11,700
B" CMP	430	LP	\$17	\$6	\$7,310	\$2,580	\$9,890
Disch Headwall	7	EA	\$800	\$1,000	\$5,600	\$7,000	\$12,60
Pup gains	6	EA	\$2,000	\$800	\$12,000	\$4,800	\$16,80
5' CO Inlet	4	EA	\$2,500	\$800	\$10,000	\$3,200	\$13,20
Gramlined channel	3150	LF	\$5	\$15	\$15,750	\$47,250	\$63,00
Grantined channel	1050	LF	\$5	\$15	\$5,250	\$15,750	\$21,00
Grantice d channel	800	LF	\$5	\$15	\$4,000	\$12,000	\$16,00
Grandined channel	1200	LF	\$5	\$15	\$6,000	\$18,000	\$24,00
Granlined channel	475	LP	\$5	\$15	\$2,375	\$7,125	\$9,50
Granized channel	1550	LP	\$5	\$15	\$7,750	\$23,250	\$31,00
Peving	13225	SY	54	54	\$\$2,900	\$52,900	\$105,80
Curb and Gutter	5340	LP	54	\$2	\$21,360	\$10,680	\$32,04
Headwalls	31	EA	\$400	\$400	\$12,400	\$12,400	\$24,80
Total Estimated Construction Cost					\$190,625	\$226,685	\$417,31
Engineering and Contingency (20%))				\$38,125	\$45,337	\$83,40
Total Estimated Cost	8				\$228,750	\$272,022	\$500,77

	Manning Road Basin							
FLOW PATH: Manning Road DRAINAGE BASINS: Manning Road	Improvement	Quantity	Unit	Unit Cost	Unit Cost	Total	Total	Total
-YEAR DESIGN: 23 cfs				Material	Installation	Material	Installation	
	36" CMP	40	LF	\$35	\$10	\$1,400	\$400	\$1,800
XISTING CONDITIONS:	18" CMP	120	LF	\$17	\$6	\$2,040	\$720	\$2,760
This portion of the Manning Road Basin includes residential and agricultural areas. Existing drainage patterns include			EA	\$400	\$400	\$2,000	\$2,000	\$4,000
verland flow, roadside ditches and culverts in some areas. The ditch and culverts along 28th Lane are inadequate. UTURE CONDITIONS:	Headwalls	5			\$15	\$6,250	\$18,750	\$25,000
Future land use is not anticipated to change.	Grasslined channel	1250	LF	\$5	312	002200	\$10,750	020,000
ROPOSED IMPROVEMENTS:								
An improved roadside ditch and culverts are proposed for this flow path.		1002 ¹¹				A11 (00	M1 070	\$22.540
	Total Estimated Construction	Cost				\$11,690	\$21,870	\$33,560
	Engineering and Contingency	y (20%)				\$2,338	\$4,374	\$6,712
LOW PATH: 27th Lane DRAINAGE BASINS: 27th Lane	Total Estimated Cost					\$14,028	\$26,244	\$40,272
-YEAR DESIGN: 11 to 64 cfs	27th Lans Basin							
	Improvement	Quantity	Unit	Unit Cost	Unit Cost	Total	Total	Total
EXISTING CONDITIONS:	the second s			Material	Installation	Material	Installation	
This portion of the 27th Lane Basin contains residential and agricultural areas. The existing drainage facilities are		a						
cceptable and include roadside ditches and curb and gutter along County Farm Road. However, Preston Road lacks a desirable outfall acility.	Grasslined Channel	2600	LF	\$5	\$15	\$13,000	\$39,000	\$52,00
UTURE CONDITIONS:	18" RCP	540	LF	\$20	\$6	\$10,800	\$3,240	\$14,04
Future land use is anticipated to include increased residential use. Onsite detention shall be required to maintain runoff at			LF	54 54	\$2	\$5,600	\$2,800	\$8,40
storic levels.	Curb and Gutter	1400			54 54	\$2,160	\$2,160	\$4,32
ROPOSED IMPROVEMENTS:	Paving	540	SY	\$4	54 \$800	\$2,100	\$1,600	ه لېږ ۲۰۹۰
The proposed improvements consist of providing and improving the ditches from Preston Road to 27th Lane.	5' CO Inlet	2	EA	\$2,500	3800	35,000	31,000	
		6 .				\$36,560	\$48,800	\$78,76
	Total Estimated Construction					\$7,312	\$9,760	\$15,75
TLOW PATH: 29th Lane DRAINAGE BASINS: 29th Lane	Engineering and Contingence	y (20%)					\$58,560	\$94,51
5-YEAR DESIGN: 47 cfs	Total Estimated Cost					\$43,872	200,000	10,000
	29th Lane Barin							
EXISTING CONDITIONS:	Improvement	Quantity	Unit	Unit Cost	Unit Cost	Total	Total	Total
This portion of the 29th Lane Basin contains mainly residential development. The existing drainage facilities include streets	2. -			Material	Installation	Material	Installation	
vith curb and gutter, and roadside ditches. There are two outfalls for this area. The first consists of a concrete detention vault at Torchey Way and County Farm Road								
hich intercepts flow from upstream street areas and discharges to the 27th Lane ditch. The remainder of the area outfalls to a low	24" BCD	750	LF	\$25	\$6	\$18,750	\$4,500	\$23,2
rea along County Farm Road and proceeds northerly along low ground.	24" RCP	40	LF	\$38	\$10	\$1,520		\$1,9
UTURE CONDITIONS:	30" RCP		LF	\$17	\$6	\$680		\$9
Future land use is anticipated to include increased residential use. Onsite detention shall be required to maintain runoff at	18" CMP	40						\$4
istoric levels.	15" CMP	20	LF	\$15	\$ 6	\$300		
ROPOSED IMPROVEMENTS:	5' CO Inlet	3	EA	\$2,500	\$800	\$7,500		\$9,9
The proposed improvements consist of directing all runoff to an outfall area at the low spot in County Farm Road. This will	2' x 2' Intercepting Inlet	1	EA	\$1,200	\$500	\$1,200		\$1,7
e done by installing curb and gutter along County Farm Road, and installing storm sewer from Torchey Way to the outfall location. A	Manhole	2	EA	\$2,000	\$500	\$4,000		\$5,0
litch section is proposed to convey flow northerly. The concrete detention vault could be eliminated with these improvements.	Pavement Replacement	855	SY	\$15	\$5	\$12,825	\$4,275	\$17,1
	Curb and Gutter	5160	LF	S4	\$2	\$20,640	\$10,320	\$30,9
	Total Estimated Construction	on Cost			_	\$67,415	\$23,755	\$91,1
						\$13,483		\$18,2
	Engineering and Contingen	icy (2076)				\$80,898		\$109,4
	Total Estimated Cost	1.5				300,030	000,000	410314

		Manning Road Basin							
FLOW PATH: Manning Road	DRAINAGE BASINS: Manning Road	Improvement	Quantity	Unit	Unit Cost	Unit Cost	Total	Total	Total
-YEAR DESIGN: 23 to 41 cfs					Material	Installation	Material	Installation	4. 38488
		Outlet Structure	1	EA	\$10,000	\$3,000	\$10,000	\$3,000	\$13,000
XISTING CONDITIONS:		Grasslined channel	1400	LF	\$5	\$15	\$7,000	\$21,000	\$28,000
	es residential and agricultural areas. Existing drainage patterns include curb		-				<u> </u>		
nd gutter, and insufficient ditches.								en 1 000	P.41 0/
UTURE CONDITIONS:		Total Estimated Constructi					\$17,000 \$3,400	\$24,000 \$4,800	\$41,00 \$8,20
Future land use is not anticipated to change. OPOSED IMPROVEMENTS:		Engineering and Continger	acy (20%)				\$20,400	\$4,800 \$28,800	\$49,2
An improved ditch is proposed to outfall 28th I	are and Cliffdale Lane.	Total Estimated Cost						420,000	
		South Road Basin							
LOW PATH: 29th Lane	DRAINAGE BASINS: 29th Lane	Improvement	Quantity	Unit	Unit Cost	Unit Cost	Total	Total	Total
				S. STOCKARD	Material	Installation	Material	Installation	
YEAR DESIGN: 25 cfs			<u></u>						
		36" CMP	175	LF	\$58	\$10	\$10,150	\$1,750	\$11,9
		Grasalined channel	1350	LF	\$5	\$15	\$6,750	\$20,250	\$27,
LISTING CONDITIONS:		Riprap channel	300	LF	\$5	\$15	\$1,500	\$4,500	\$6,
and the second states and the second states and the second states and the second	residential and agricultural areas. The existing roadside ditch and culverts	Concrete transition	1	EA	\$500	\$500	\$500	\$500	\$1,
ong 29th Lane are inadequate. UTURE CONDITIONS:		Ditch checks	3	EA	\$2,000	\$500	\$6,000	\$1,500	\$7,
	ased residential use. Onsite detention shall be required to maintain runoff at	Headwalls	7	EA	\$400	\$400	\$2,800	\$2,800	\$5,6
storic levels.		11040 WATE				68956 G	5 5 .		
ROPOSED IMPROVEMENTS:			and the second					2 (AM)	949
The proposed improvements consist of improv	ing the ditches and culverts along 29th Lane.	Total Estimated Construct	tion Cost				\$27,700	\$31,300	\$59,0
4 A.							\$5,540	\$6,260	\$11,8
		Engineering and Continge	aicy (20%)				\$33,240	\$37,560	\$70,8
LOW PATH: South Road	DRAINAGE BASINS: South Road	Total Estimated Cost						401,000	
-YEAR DESIGN: 8 to 38 cfs		29th Lane Basin							
		Improvement	Quantity	Unit	Unit Cost	Unit Cost	Total	Total	Total
XISTING CONDITIONS:					Material	Installation	Material	Installation	
	s mainly residential development with some open space areas. The existing								
ainage facilities include roadside ditches with culverts,		24" CMP	225	LF	\$28	\$6	\$6,300		\$7,
UTURE CONDITIONS:		Grasslined channel	1325	LF	\$5	\$15	\$6,625	\$19,875	\$26,
	ased residential use. Onsite detention shall be required to maintain runoff at	Headwalls	10	EA	\$400	\$400	\$4,000	\$4,000	\$8,
istoric levels.			and the second sec						
ROPOSED IMPROVEMENTS:		Total Estimated Construct	tion Cost				\$16,925	\$25,225	\$42
The proposed improvements consist of improv	ing the insufficient ditch and culvert areas along 30th Lane.	Engineering and Conting					\$3,385	\$5,045	\$8
		Total Estimated Cost					\$20,310		\$50,
		TOTAL ENTITIATION COST					40.000		

Preliminary Design Cost Estimate Sheet 19

FLOW PATH: South Road

DRAINAGE BASINS: South Road

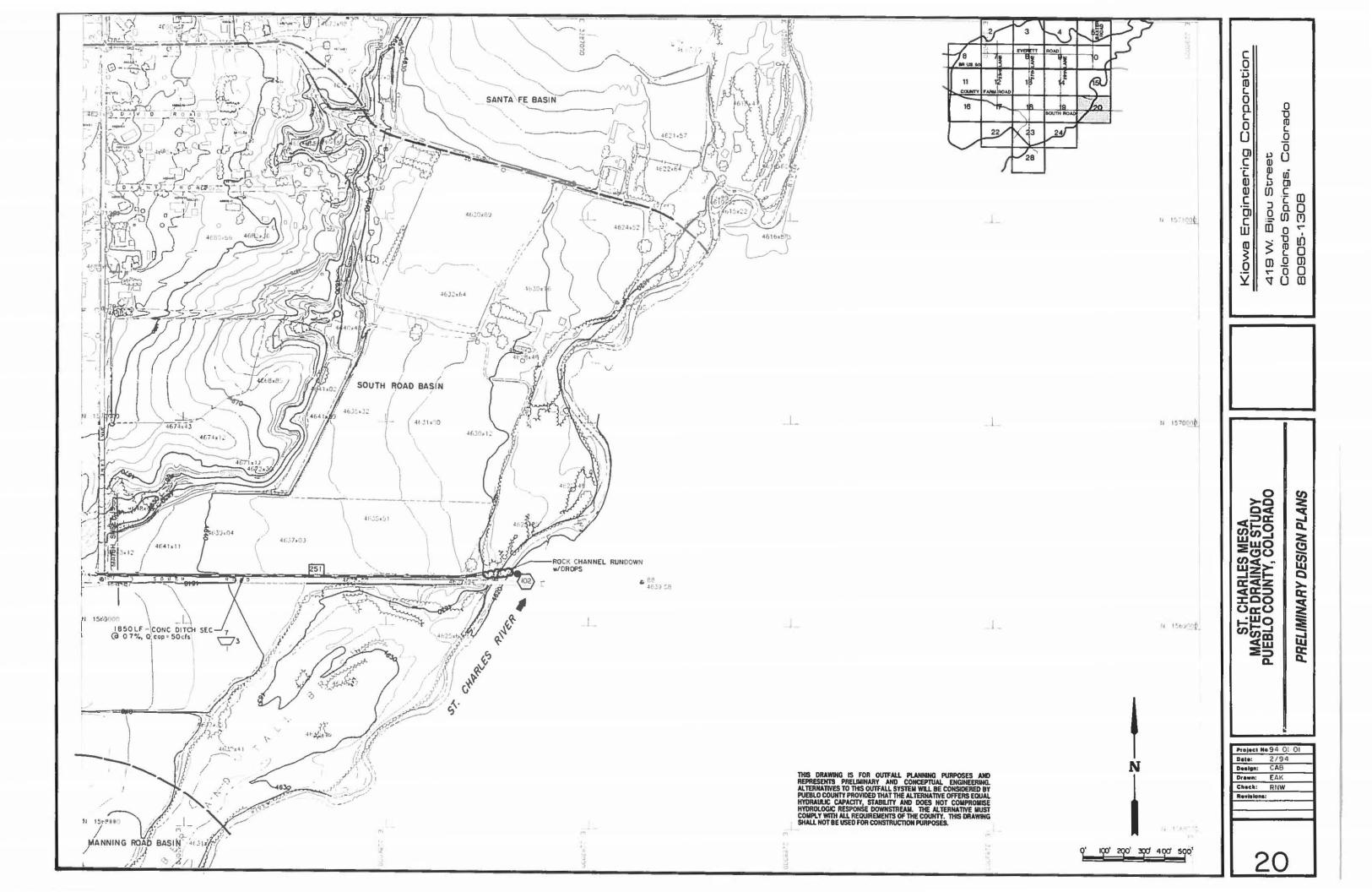
5-YEAR DESIGN: 8 to 14 cfs

EXISTING CONDITIONS:

This portion of the South Road Basin includes residential and agricultural areas. Existing drainage patterns include roadside ditches. The ditch along South Road is inadequate.

FUTURE CONDITIONS:

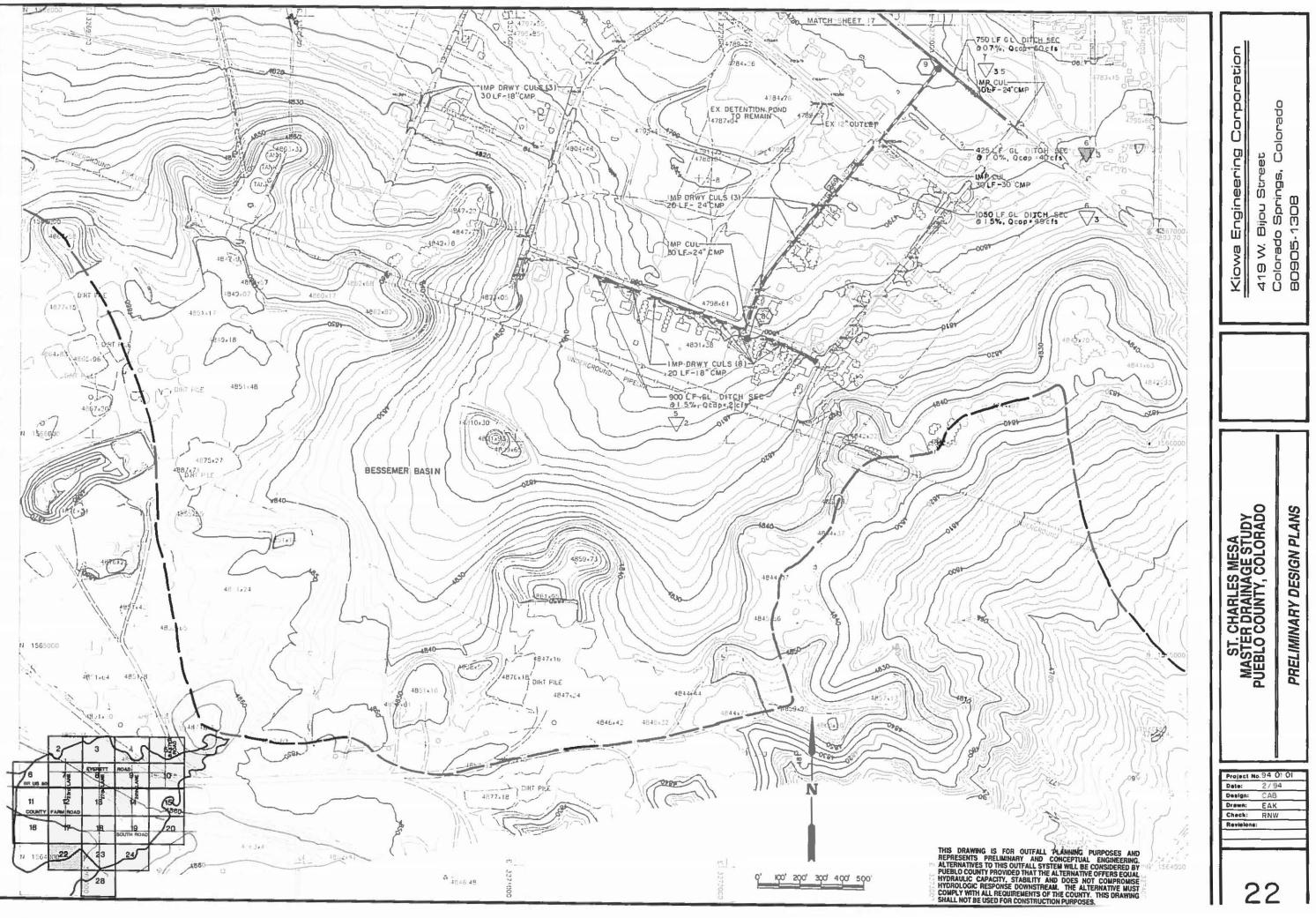
Future land use is anticipated to include increased residential use. Future development shall be required to provide onsite detention to maintain flows to historic levels.


PROPOSED IMPROVEMENTS:

An improved ditch is proposed along South Road with a rock channel rundown at the St. Charles River.

Preliminary Design Cost Estimate Sheet 20

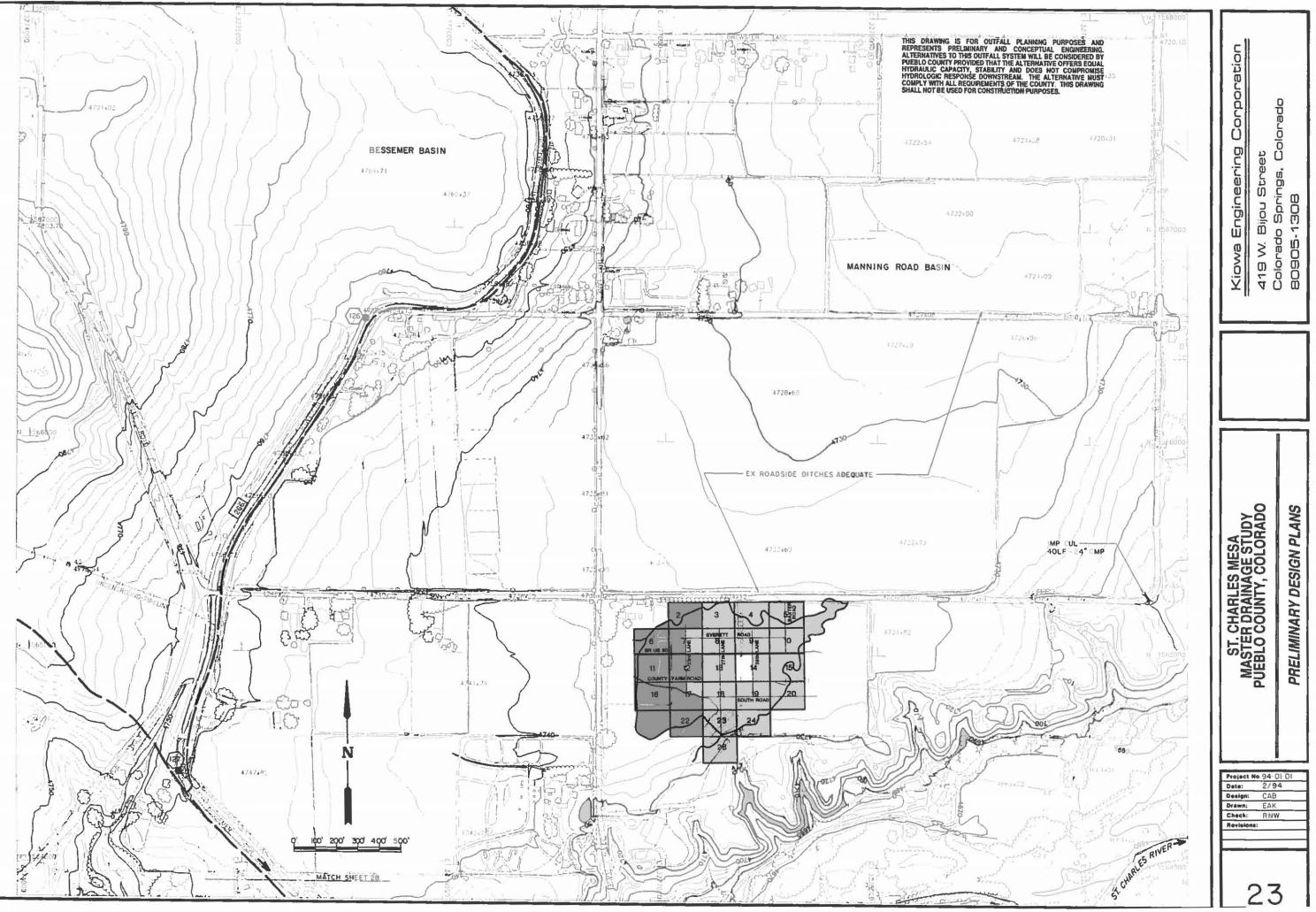
South Road Basin


Improvement	Quantity	Unit	Unit Cost Material	Unit Cost Installation	Total Material	Total Installation	Total
Type M riprap rundown	150	CY	\$20	\$6	\$3,000	\$900	\$3,900
Concrete Ditch Checks	3	EA	\$600	\$300	\$1,800	\$900	\$2,700
Grasslined channel	1850	LF	\$5	\$15	\$9,250	\$27,750	\$37,000
Total Estimated Construction	n Cost				\$14,050	\$29,550	\$43,600
Engineering and Contingence	y (20%)				\$2,810	\$5,910	\$8,720
Total Estimated Cost					\$16,860	\$35,460	\$52,320

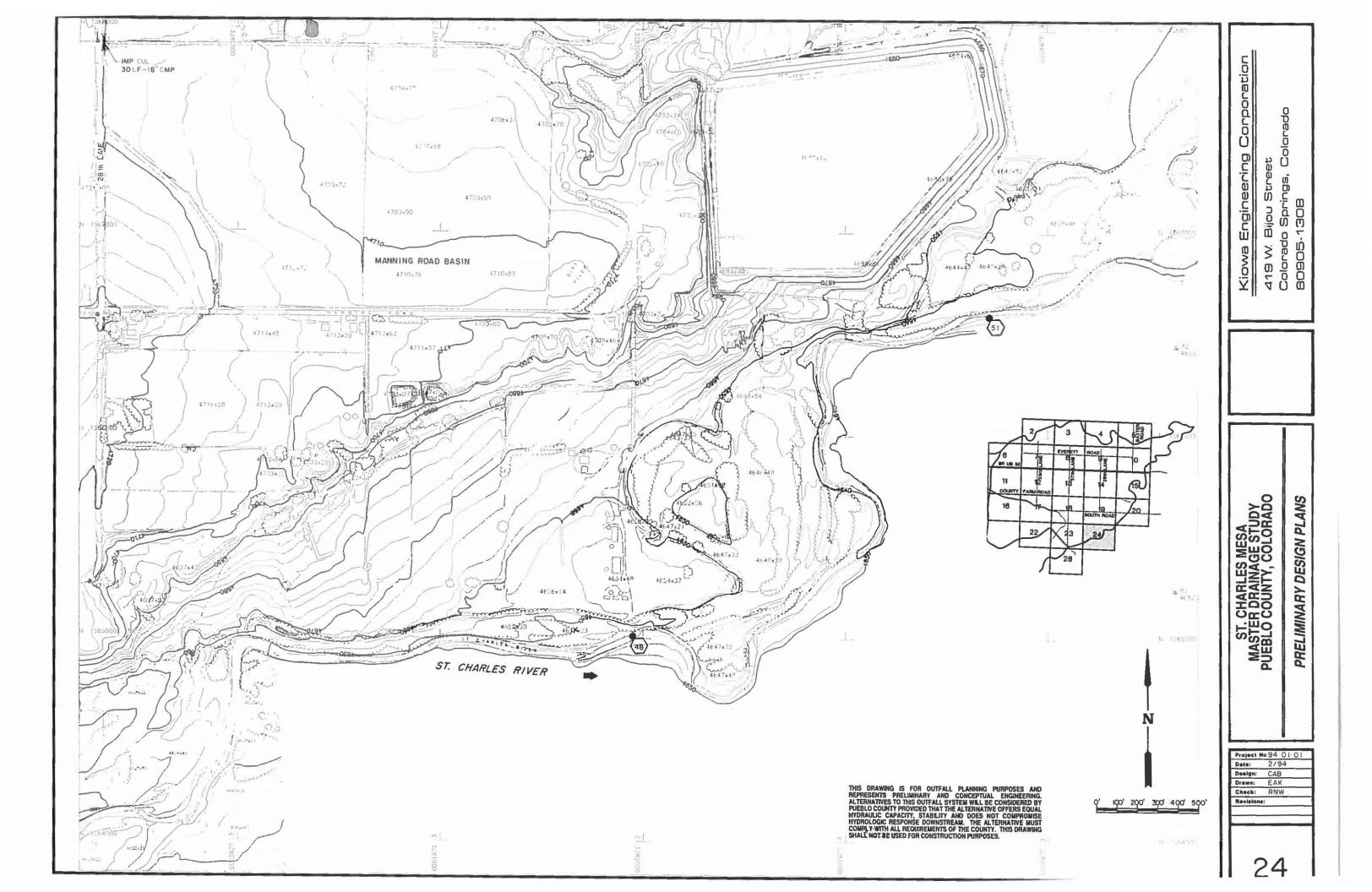
Preliminary Design Cost Estimate Sheet 22

Brasemer Ditch Basin

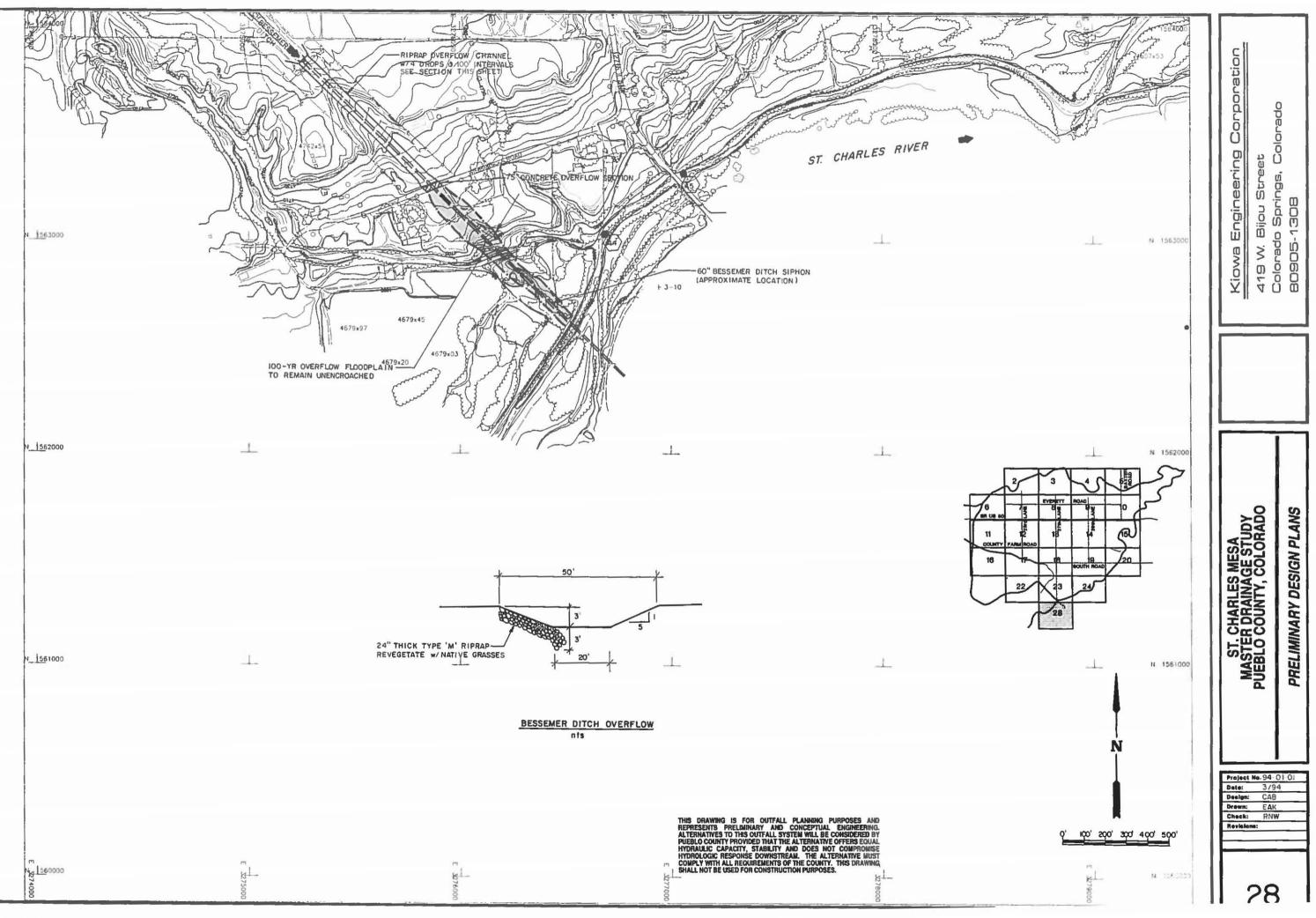
FLOW PATH: La Salle Road DRAINAGE BASINS: Bessemer 5-YEAR DESIGN: 31 to 63 cfs	Improvement	Quantity	Unit	Unit Cost Material	Unit Cost Installation	Total Material	Total Installation	Total
	30" CMP	30	LF	\$29	\$10	\$870	\$300	\$1,170
EXISTING CONDITIONS:	24" CMP	120	LF	\$22	\$ 6	\$2,640	\$720	\$3,360
This portion of the Bessemer Basin is largely undeveloped, with small areas of residential development. The undeveloped	18" CMP	250	LF	\$17	\$6	\$4,250	\$1,500	\$5,750
areas contain mainly open spaces. Existing drainage characteristics include roadside ditches and culverts in some areas with no	Grasslined channel	1475	LF	\$5	\$15	\$7,375	\$22,125	\$29,500
facilites in other areas. However, some ditches and culverts are undersized.	Grasslined channel	750	LF	\$5	\$15	\$3,750	\$11,250	\$15,000
The Lakeside Manor Estates area contains an existing detention pond which will remain.	Grasslined channel	900	LF	\$5	\$15	\$4,500	\$13,500	\$18,000
FUTURE CONDITIONS:	Headwalls	17	EA	\$400	\$400	\$6,800	\$6,800	\$13,600
Future land use is not anticipated to change.	an and a second and and an annual of a second se							
PROPOSED IMPROVEMENTS:	Total Estimated Constructi	on Cost				\$30,185	\$56,195	\$86,380
A system of adequate roadside ditches and culverts is proposed in this area	Engineering and Contingen	ncy (20%)				\$6,037	\$11,239	\$17,276
	Total Estimated Cost					\$36,222	\$67,434	\$103,656

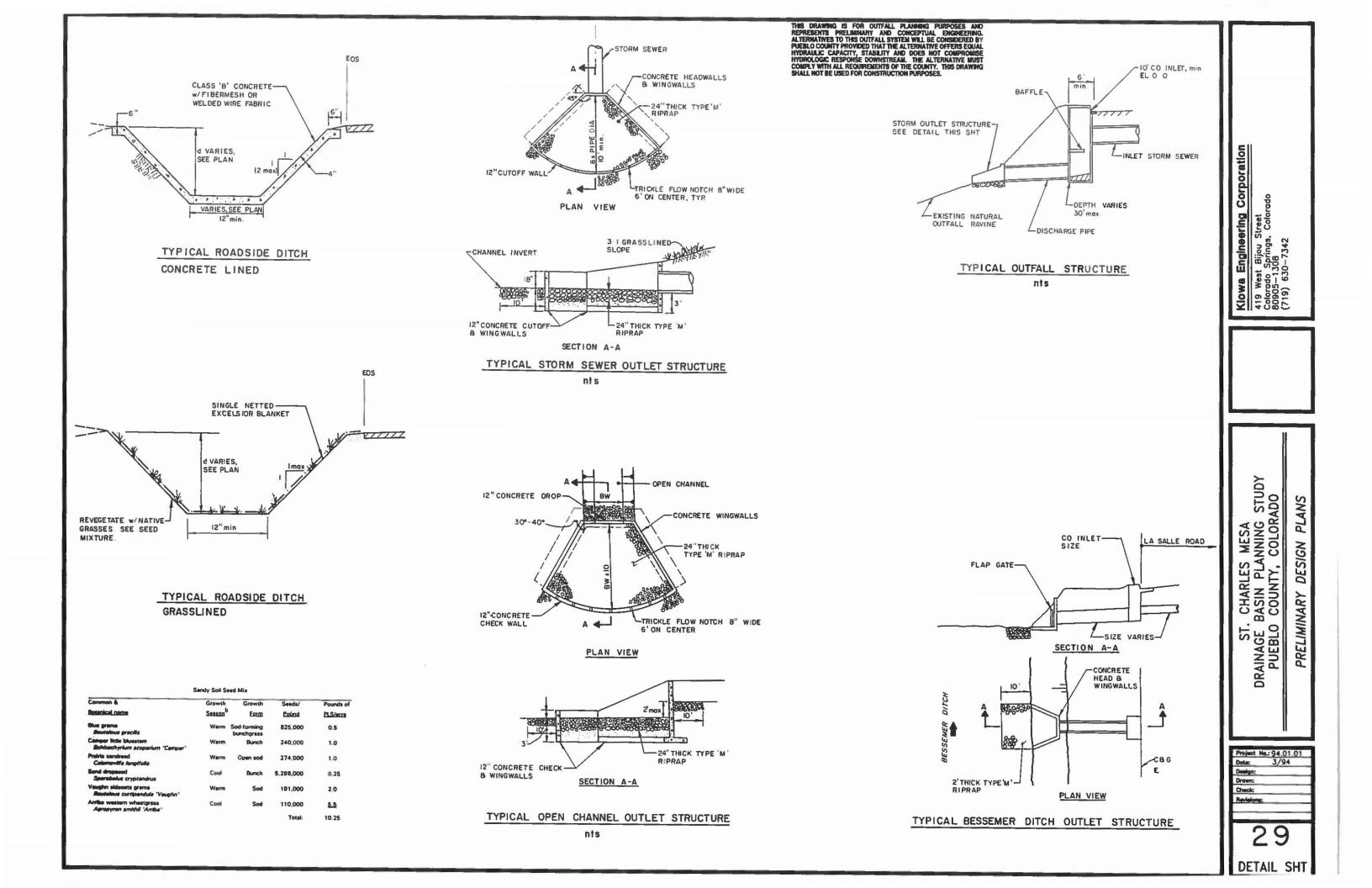


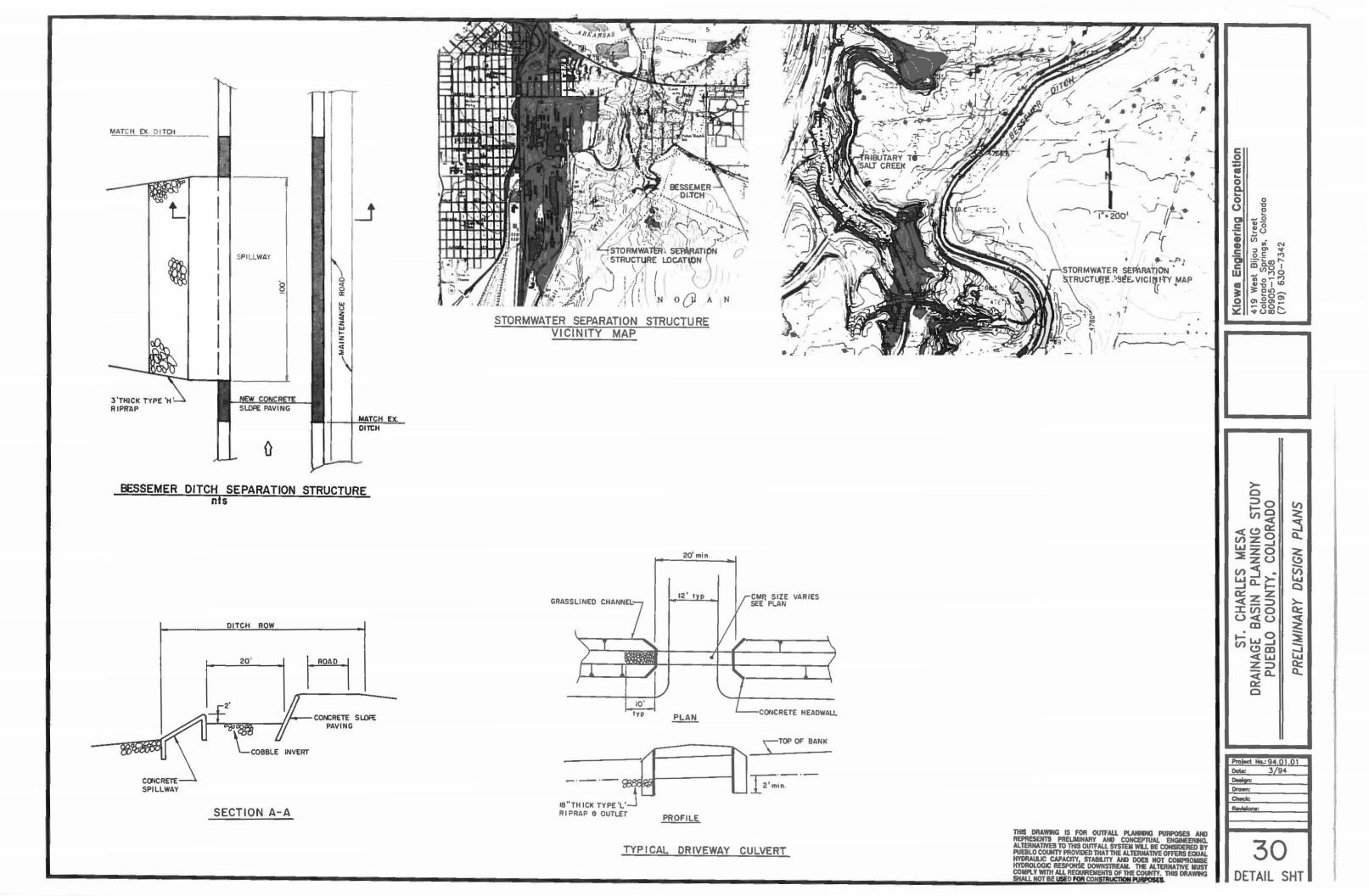
Preliminary Design Cost Estimate Sheet 23

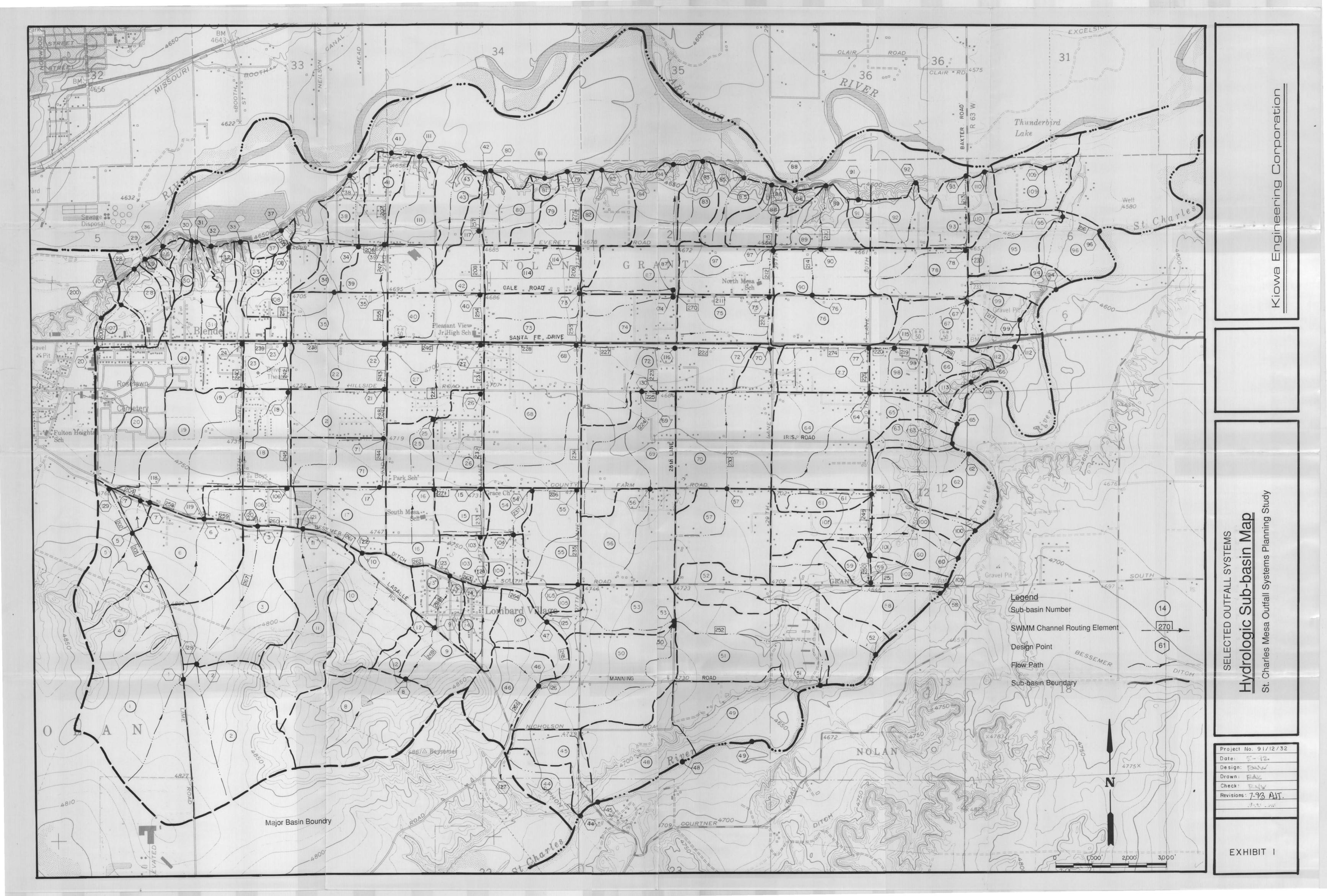

COMMENTART SHEET 25		Manning Road Basin							
FLOW PATH: Manning Road 5-YEAR DESIGN: 18 to 23 cfs	DRAINAGE BASINS: Manning Road	Improvement	Quantity	Unit	Unit Cost Material	Unit Cost Installation	Total Material	Total Installation	Total
		24" CMP	40	LF	\$22	\$ 6	\$880	\$240	\$1,120
EXISTING CONDITIONS: This portion of the Manning Basin characteristics include overland flow with adequa	is largely undeveloped and used for agricultural purposes. Existing drainage te roadside ditches.	Headwalls	1	EA	\$400	\$400	\$400	\$400	\$800
FUTURE CONDITIONS: Future land use is anticipated to include increased residential uses. Future development shall be required to provide onsite detention to maintain flows to historic flows.		Total Estimated Construct Engineering and Continge					\$1,280 \$256	\$640 \$128	\$1,920 \$384
		Total Estimated Cost					\$1,536	\$768	\$2,304

PROPOSED IMPROVEMENTS:


One culvert is proposed to help facilitate drainage under Nicholson Road.




	Maming Road Basin								
FLOW PATH: Manning Road 5-YEAR DESIGN: 27 to 41 cfs	DRAINAGE BASINS: Manning Road	Improvement	Quantity	Unit	Unit Cost Material	Unit Cost Installation	Total Material	Total Installation	Total
EXISTING CONDITIONS:	in is largely undeveloped and used for agricultural purposes. Existing drainage ate roadside ditches.	18" CMP Headwalls	30 1	LF EA	\$17 \$400	\$6 \$400	\$510 \$400	\$180 \$400	\$690 \$800
FUTURE CONDITIONS: Future land use is not anticipated to c	hange.		Total Estimated Construction Cost Engineering and Contingency (20%)				\$910 \$182	\$580 \$116	\$1,490 \$298
PROPOSED IMPROVEMENTS: One culvert is proposed to help facili	tate drainage at the intersection of Manning Road and 28th Lane.	Total Estimated Cost					\$1,092	\$696	\$1,788


		Bestemer Ditch							
FLOW PATH: Bessemer Ditch	DRAINAGE BASINS: Bessemer Ditch	Improvement	Quantity	Unit	Unit Cost	Unit Cost	Total	Total	Total
5-YEAR FLOW RANGE: 74 cfs		mikovenen	Quantity	Offic	Material	Installation	Material	Installation	1044
100-YEAR FLOW RANGE: 559 cfs									
		Williams Rd. wier	1	EA	\$15,000	\$10,000	\$15,000	\$10,000	\$25,000
EXISTING CONDITIONS:		Drop structures	4	EA	\$4,000	\$3,000	\$16,000	\$12,000	\$28,000
	to the existing siphon under the St. Charles River.	Riprap Channel	820	LF	\$75	\$50	\$61,500	\$41,000	\$102,500
PROPOSED IMPROVEMENTS:									
	structure that will convey stormwater within the Bessemer Ditch to the St.	Total Estimated Constructi	on Cost				\$92,500	\$63,000	\$155,500
Charles River. This structure will include an overflow swale with vertical drop structures to convey flow in excess of the siphon's capacity. Downstream of Williams Road a residual floodplain has been defined which will need to remain unencroached.		Engineering and Continger	Engineering and Contingency (20%)					\$12,600	\$31,100
		Total Estimated Cost					\$111,000	\$75,600	\$186,600

Sc.,

